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Abstract 
 

Prior research has highlighted the importance of two distinct types of informed 

trading in options market: trading on price direction of underlying stocks and trading 

on their uncertainty. Surprisingly, however, there are no studies considering them in 

a unified framework. This paper attempts to fill the gap. We predict that when both 

the directional and volatility information can motivate options trading, the return 

predictability of options volume hinges on the shape of the volatility smirk. 

Consistent with the prediction, we find that the negative relationship between 

options volume and future stock returns is concentrated in stocks exhibiting steep 

volatility smirks. 
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1. Introduction 

Extant literature in Finance has highlighted the role of options markets as a venue for 

information-based trading. Options markets attract informed traders by mitigating short-sale 

constraints in stock market and providing a higher leverage (Black (1975); Diamond and Verrecchia 

(1987)). Moreover, options markets are uniquely suited to investors with information about future 

volatility (Back (1993); Ni, Pan, and Poteshman (2008)). Consequently, options markets contain 

valuable information about the underlying security.1  Although two distinct types of information, 

particularly information about future stock prices (hereafter directional information) and information 

about future stock volatility (hereafter volatility information), are often considered for the reasons why 

investors choose to trade options, previous studies have accorded them separate treatment.  

This paper fills the gap by theoretically and empirically investigating the differing effects of 

directional and volatility informed trading in a unified framework. We theoretically show that the 

relation between options trade and future stock price varies with the shape of the volatility smirk, 

depending on which of the directional or volatility information prevails as a motive for options trading. 

Following Roll, Schwartz, and Subrahmanyam (2010), we use the ratio of total options volume to the 

underlying stock volume (O/S) to measure informed trades in options markets. Consistent with the 

theoretical prediction, we find significant differences in the return predictive power of O/S across 

stocks exhibiting different shapes of the volatility smirk. At the end of each week, we sort firms based 

on O/S and the steepness of the smirks. Then we consider a strategy of buying stocks with low O/S 

and shorting stocks with high O/S. For stocks exhibiting steep smirks, the strategy provides an average 

risk-adjusted hedge return of 0.40% in the week following the formation date (23.1% annualized). For 

stocks exhibiting less pronounced smirks, the strategy’s profits are indistinguishable from zero. 

                                                                 
1 Many studies on the options-stock market linkage have examined numerous variables regarding options price and volume. Options price-
related variables include implied stock prices (Chakravarty, Gulen, and Mayhew, 2004; Manaster and Rendleman, 1982); differences in 
implied volatilities between call and put options (Bali and Hovakimian, 2009; Cremers and Weinbaum, 2010); slope of implied volatility 
smirk (Xing, Zhang, and Zhao, 2010); change in options implied volatilities (An, Ang, Bali, and Cakici, 2014), to name a few. Options 
volume-related variables include the residual call options volume (Anthony, 1988); signed options volume (Easley, O’Hara, and Srinivas, 
1998); call volume imbalance (Cao, Chen, and Griffin, 2005); put to call volume ratio (Pan and Poteshman, 2006); and options to stock 
volume ratio (Johnson and So, 2012). 
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We argue that the cross-sectional variation of the O/S-return relation with the shape of the 

volatility smirk is driven by the difference in the relative significance of directional versus volatility 

informed trading in options markets. For example, investors with negative information about stock 

prices cause net buying pressure for out-of-the-money (OTM) puts but net selling pressure for at-the-

money (ATM) calls, leading to the higher implied volatility for OTM puts than that of ATM calls.2 In 

addition, as the negative news motivating options trades is impounded into the stock price, low stock 

returns will be followed. However, investors with positive information about stock volatility cause net 

buying pressure for both OTM puts and ATM calls, leading to relatively flat implied volatility curve. 

In addition, volatility informed trades in options markets do not predict future stock price to the extent 

that volatility information is not correlated with directional information. This example shows that 

directional informed trades in options generate steep volatility smirks and portend future stock returns, 

while volatility informed trades neither generate volatility smirks nor predict stock returns. 

We formally explore the differing implications of directional and volatility informed trading 

using a model that allows for the asymmetric information on both stock prices and volatility among 

investors who can trade in the options and stock markets. Easley, O'Hara, and Srinivas (1998) 

construct a multimarket model wherein directional informed traders choose to transact in the options 

and/or stock markets. We extend this model to accommodate volatility informed traders in addition to 

directional informed traders. Our extended model provides a framework for examining how the 

options market statistics and their information contents vary with which of the directional or volatility 

information prevails as a motive for options trading. Using this model, we illustrate that the difference 

in the relative concentration of directional versus volatility informed traders gives rise to the variation 

in the shapes of the volatility smirk and the degree to which options trades predict the stock returns. 

Our article is closely related to Johnson and So (2012), who present evidence that stocks with 

high O/S have low subsequent returns. A short sale restriction in the stock market makes it costly to 

trade stocks on bad news, causing traders to use options more frequently for bad news than for good 

                                                                 
2 Options’ expensiveness, represented by the shape of options implied volatility curve, is often explained by demand imbalance across 
options (Bollen and Whaley (2004); Garleanu, Pedersen, and Poteshman (2009)). 
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news. Accordingly, Johnson and So (2012) argue that high O/S reflects the prevalence of traders with 

negative information about the equity value, thereby predicting low future equity value. Unlike 

Johnson and So (2012), we recognize volatility information as an important options trading motive in 

addition to negative directional information.3 Since an agent with information about future volatility 

has no choice but to trade in options markets, the demand for volatility trading would increase the 

volume in options markets relative to the stock market. We show that for stocks whose options trading 

is mainly motivated by directional information, high O/S is a strong negative predictor for future 

prices, as in Johnson and So (2012). However, for stocks whose options trading is mainly motivated 

by volatility information, high O/S is no longer a predictor for future prices. Our analysis highlights 

the importance of distinguishing between two distinct options trading motives in understanding the 

O/S-return relation and demonstrates the more general nature of this relation.  

The rest of the paper is organized as follows. Section 2 provides our extension of the Easley, 

O'Hara, and Srinivas (1998) model and shows that the relative significance of directional versus 

volatility informed trading in options market causes the return predictability of options volume to vary 

with the shape of the volatility smirk. Section 3 describes the data and Section 4 presents the empirical 

results that options volume interacts with the volatility smirk in predicting the cross-section of stock 

returns. Section 5 concludes.  

2. The model 

Easley, O'Hara, and Srinivas (1998) developed a model of multimarket trading, in which traders 

choose to transact in the options and/or stock markets when they are informed about future stock price. 

In this section, we extend the multimarket model to include information asymmetry on future stock 

volatility and the short-sale cost of stock.  

                                                                 
3 The volatility information trading in options markets has been well documented in the volatility forecasting literature (see, e.g., Blair, Poon, 
and Taylor, 2001; Busch, Christensen, and Nielsen, 2011; Christensen and Prabhala, 1998; Jiang and Tian, 2005; Taylor, Yadav, and Zhang, 
2010). 
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A key feature of our model is that the two types of informed traders - directional and volatility 

informed traders - differ in their choice of where and what to trade. First, regarding where to trade, the 

volatility informed have no choice but to trade in the options market. The directional informed, who 

are susceptible to short-sale costs in the stock market, can choose to trade in options more frequently 

for bad news than for good news. Second, regarding what to trade, the volatility informed trade call 

and put options in the same direction, thereby exerting net buying pressure of the same sign on call 

and put options. The directional informed, on the other hand, trade calls and puts in the opposite 

direction, thus exerting net demand pressure of the opposite sign on calls and puts. The different 

behaviors of the two types of traders result in differing predictions about both relative options trading 

volume and the price structure of options.  

There are three tradable assets in the model: a stock, a call option with exercise price ܭ, and a 

put option with exercise price ܭ. We focus on European options with a single expiration date J. The 

underlying stock liquidates for ሚܵ at some future time T, before the options expire at time J. The value 

of ሚܵ is unknown prior to time T, but it is common knowledge that ሚܵ ∈ ሼܵ, ܵுሽ, with ܵு  ܵ. The 

volatility of the stock returns for the remaining life of the options has a value at time T given by the 

random variable ߪ , where ߪ ∈ ሼߪ, ுߪ ுሽ, withߪ  ߪ . The call and put options values at time T, 

denoted by ܥሚ and ෨ܲ  respectively, are given by functions of the stock price ሚܵ and the volatility ߪ at 

time T: ܥሚ ൌ ሺܥ ሚܵ, ሻ and ෨ܲߪ ൌ ܲሺ ሚܵ,   .ሻߪ

We define two types of information events: a signal ߖௌ about the future stock price and a signal 

Ψఙ about the future stock volatility. We assume that information events occur before the start of trade 

and the values of the two signals are independently determined. Both types of signals, Ψௌ and Ψఙ, are 

equally likely to take on one of two values, L and H. The stock liquidates for ܵ if Ψௌ ൌ  or ܵு if ܮ

Ψௌ ൌ ܪ . Similarly, the value of the future volatility is ߪ  if Ψఙ ൌ ܮ  or ߪு  if Ψఙ ൌ ܪ . This 

probabilistic structure of information is common knowledge, but only some traders know of the value 

of the signal. The fraction α of the universe of traders is informed and fraction 1 െ α is uninformed. 

Informed traders are assumed to observe only one type of signal. Of the informed traders, the fraction 
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1 െ δ know the value of Ψௌ, but not Ψఙ. The remaining fraction δ know the value of Ψఙ, but not Ψௌ. 

Here, we refer to the former as “directional informed traders” and the latter as “volatility informed 

traders.” 

Figure 1 illustrates the three time points in the model. At the initial time point 0, trades in the 

stock and options markets occur. As in Easley, O'Hara, and Srinivas (1998), a trade is assumed to 

occur at a fixed size such that a trade consists of a single round lot of ߛ shares of stock or a single 

options contract controlling ߠ shares of stock. Also, traders can execute only one trade at a time (i.e., 

they cannot execute multiple trades simultaneously). In addition, traders must pay a lending fee to a 

third party when shorting the stock, as assumed in Johnson and So (2012). For simplicity, we assume 

that the short-sale cost reduces a short-seller’s net payoff by ρ  0. At some time T before the options 

mature, the reality is known and the information asymmetry is resolved. There are four possible states: 

ሼܵு, ,ுሽ, ሼܵுߪ ,ሽ, ሼܵߪ ,ுሽ, and ሼܵߪ   .ሽߪ

 

[Figure 1 about here] 

 

There are four types of market participants: market makers, directional informed traders, 

volatility informed traders, and uninformed traders. Market makers in each market are competitive, 

setting the bid and ask prices so that conditional on an order their expected profit is zero. We denote 

by ܾ௦ and ܽ௦ the bid and ask prices for the stock; ܾ and ܽ the bid and ask prices for the call option; 

and ܾ and ܽ the bid and ask prices for the put option. Market makers cannot distinguish whether a 

specific buy or sell order is from an informed trader or an uninformed trader. 

Informed traders choose the trade that results in the highest expected profit given their 

information. Unlike directional informed traders, who can trade in either the stock or options markets, 

volatility informed traders can use only options contracts to take advantage of their information. 

Specifically, a directional informed trader who knows that ሚܵ ൌ ܵு could buy the stock, buy the call, or 

sell the put. Then the expected profit is:  
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ுߨ
ௗ ൌ ቐ	

ሺെܽ௦ߛ  ܵுሻ
൫െܽߠ  ሚหܥൣܧ ሚܵ ൌ ܵுሿ൯

൫ܾߠ െ ሾܧ ෨ܲห ሚܵ ൌ ܵு ሿ൯

݂݅ ݕݑܾ ݄݁ݐ ,݇ܿݐݏ
݂݅ ݕݑܾ ݄݁ݐ ݈݈ܿܽ,
݂݅ ݈݈݁ݏ ݄݁ݐ .ݐݑ

ሺ1ሻ	

A directional informed trader who knows that ሚܵ ൌ ܵ could sell the stock, sell the call, or buy the put. 

The expected profit is: 

ߨ
ௗ ൌ ቐ

ሺܾ௦ߛ െ ܵሻሺ1 െ ሻߩ
൫ܾߠ	 െ ሚหܥൣܧ ሚܵ ൌ ܵ ሿ൯

൫െܽߠ	  ሾܧ ෨ܲห ሚܵ ൌ ܵሿ൯

݂݅ ݈݈݁ݏ ݄݁ݐ ,݇ܿݐݏ
݂݅ ݈݈݁ݏ ݄݁ݐ ݈݈ܿܽ,
݂݅ ݕݑܾ ݄݁ݐ .ݐݑ

ሺ2ሻ	

A volatility informed trader who knows that ߪ ൌ  ு could buy the call or the put. Then the expectedߪ

profit is: 

ுߨ
௩ ൌ ቊ

൫െܽߠ  ߪሚหܥൣܧ ൌ ுሿ൯ߪ

൫െܽߠ  ሾܧ ෨ܲหߪ ൌ ுሿ൯ߪ
݂݅ ݕݑܾ ݄݁ݐ ݈݈ܿܽ,
݂݅ ݕݑܾ ݄݁ݐ .ݐݑ ሺ3ሻ

A volatility informed trader who knows that ߪ ൌ   could sell the call or the put. Then the expectedߪ

profit is: 

ߨ
௩ ൌ ቊ

൫ܾߠ െ ߪሚหܥൣܧ ൌ ߪ ሿ൯

൫ܾߠ െ ሾܧ ෨ܲหߪ ൌ ߪ ሿ൯
݂݅ ݈݈݁ݏ ݄݁ݐ ݈݈ܿܽ,
݂݅ ݈݈݁ݏ ݄݁ݐ .ݐݑ ሺ4ሻ

Figure 2 summarizes the structure of information and the decisions of informed traders. We 

denote by ߟௗௌ the fraction of directional informed traders who choose to trade in the stock market, and 

by ߟௗ  the fraction of directional informed traders who choose to trade call options. The subscript d 

indicates the value of the signal Ψௌ that traders receive and takes on one of two values, H and L. The 

fraction of volatility informed traders who choose to trade call options are denoted by ߞ௩, where v 

indicates the value of the signal Ψఙ that traders receive and takes on one of two values, H and L. The 

exact values of ሼߟுௌ, ,ுߟ ,ௌߟ ,ߟ ,ுߞ  .ሽ are determined in the equilibriumߞ
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Uninformed traders do not select a trade to maximize their profit, but are instead exogenously 

allocated to specific trades. As is standard in microstructure models, the uninformed are liquidity 

providers (or noise traders) who trade for reasons not included in the model, for example, the need to 

hedge, or a false conviction that they can beat the market. We assume that the fraction of uninformed 

traders who buy stock, sell stock, buy calls, sell calls, buy puts, and sell puts are ݍଵ,	ݍଶ, ݍଷ, ݍସ,	ݍହ, and 

∑ , respectively, whereݍ ݍ

ୀଵ ൌ 1.  

 

[Figure 2 about here] 

 

2.1. Equilibrium 

Given our setting, two conditions must be met for the stock and option markets to constitute 

equilibrium. First, because market makers in each are competitive and risk-neutral, a zero profit 

condition applies, such that the bid and ask prices the market makers set equal the expected values of 

the securities given their beliefs about the decisions of informed traders. Second, informed traders’ 

decisions on where and what to trade are optimal and as conjectured by the market makers.  

Like Easley, O'Hara, and Srinivas (1998), two types of equilibria can occur: a separating 

equilibrium and a pooling equilibrium. A separating equilibrium occurs when a certain type of 

informed traders transact in only one market, separated from other types of traders. For example, if the 

leverage effect of options is not large enough, all directional informed traders will choose to trade only 

in the stock market. On the other hand, a pooling equilibrium occurs when one type of informed trader 

is willing to transact in several different venues, together with other types of traders. Which type of 

equilibria will occur depends on parameters such as the liquidity of the market and options leverage, 

discussed in Appendix A. We focus on pooling equilibria throughout.  

The bid and ask prices for each asset ൛ܽ௦, ܾ௦, ܽ, ܾ, ܽ, ܾൟ and the fraction of informed traders in 

each market ሼߟுௌ, ,ுߟ ,ௌߟ ,ߟ ,ுߞ  ሽ are the 12 equilibrium parameters. They are determined toߞ
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satisfy 12 equations, which ensure that the market maker’s expected profit is zero for each trade and 

that informed traders are indifferent between possible trades at equilibrium. These equations are 

presented in Appendix B.  

2.2. How do the information content of options trading volume and the volatility smirk vary with the 

concentration of directional versus volatility informed traders?  

We are interested in how different types of informed traders affect the information content of 

trading volumes and the price structure of options. Examining the two extreme cases provides insight 

into the differing impacts of directional versus volatility informed traders. In the first case, all 

informed traders are assumed to be directional informed (δ ൌ 0). This case corresponds to the Johnson 

and So (2012) model illustrating the effect of a short-sale cost on directional informed traders’ choices. 

We assume throughout the existence of a short-sale cost as in Johnson and So (2012). In the second 

case, all informed traders are assumed to be volatility informed (δ ൌ 1). The following propositions 

describe the mean equity values conditional on a trader’s choice of trading venue and the options 

prices in equilibrium for the two cases. The proofs are provided in Appendix C. 

PROPOSITION 1: When all informed traders are directional informed (ߜ ൌ 0), the mean stock value 

conditional on an options trade is less than that conditional on a stock trade (ൣܧ ሚܵห݊݅ݐ	݁݀ܽݎݐ൧ ൏

ൣܧ ሚܵห݇ܿݐݏ	݁݀ܽݎݐ൧). In addition, the difference in prices between an OTM put and an ATM call is 

larger than the difference in the unconditional expected values between them. 

 

PROPOSITION 2: When all informed traders are volatility informed (ߜ ൌ 1), the mean stock value 

conditional on an options trade is the same as that conditional on a stock trade 

ൣܧ) ሚܵห݊݅ݐ	݁݀ܽݎݐ൧ ൌ ൣܧ ሚܵห݇ܿݐݏ	݁݀ܽݎݐ൧ሻ. In addition, the difference in prices between an OTM put 

and an ATM call equals the difference in the unconditional expected values between them. 
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To translate the propositions into empirical predictions, we follow Johnson and So (2012) and 

use relative trading volumes in the stock and options markets as an empirical construct for traders’ 

choices between the two markets. Moreover, the price difference between an OTM put and an ATM 

call is represented by the slope of the implied volatility curve. This leads to the following empirical 

predictions.  

EMPIRICAL PREDICTIONS: When directional informed traders dominate the options market, a 

high ratio of options volume to stock volume predicts low future stock prices and the options volatility 

curve has a steeper slope. On the other hand, when volatility informed traders dominate the options 

market, the options-to-stock-volume ratio is not related to future stock prices and the options volatility 

curve is flat.  

Taken together, our model suggests that the return predictability of the relative options volume 

and the shape of volatility smirks vary with the relative concentrations of directional versus volatility 

informed traders in the markets. Thus, the shape of the volatility smirk identifies when the relative 

options volume has information about future stock returns. In particular, a high options-to-stock-

volume ratio predicts negative future stock returns when the volatility smirk is steep, but not when the 

volatility smirk is flat.  

3. Data 

Our sample period is from January 1996 to December 2012. The options data are from the Ivy 

OptionMetrics database, which provides end-of-day bid and ask quotes, open interests, and volumes 

on all exchange-listed options on U.S. equities. It also computes their implied volatilities and greeks 

using Cox, Ross, and Rubinstein’s (1979) binomial tree model. We obtain return data for the stocks 

that underlie the options from the Center for Research in Security Prices (CRSP). General accounting 

data and earnings forecast data come from Compustat and the Institutional Brokers’ Estimate System 

(IBES), respectively.  
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We apply a series of data filters to minimize the impact of recoding errors and illiquidity. First, 

following Xing, Zhang, and Zhao (2010), options with implied volatilities less than 3% and more than 

200% are discarded. Second, we eliminate all observations for which the underlying stock has zero 

trading volume or is priced less than a dollar. Third, we require options contracts to have positive open 

interest, non-missing volume data, and a price (i.e., the midpoint of bid and ask quotes) of at least 

$0.125. In addition, we also exclude options with less than 5 trading days and more than 60 trading 

days to expiration.4 Finally, since some of our analyses involve measuring a historical average of 

relative options volume, we require each observation in the sample to have a history of six months of 

weekly options and stock volumes. 

We begin by measuring two different aspects of options markets: traders’ preference for options 

markets over the underlying stock market as a trading venue and the structure of options prices. As an 

empirical construct for the relative merit of trading in the options market, we employ two alternative 

measures. The first is the ratio of options trading volume to underlying stock volume, O/S, which was 

developed by Roll, Schwartz, and Subrahmanyam (2010) and further studied by Johnson and So 

(2012). Specifically, for each stock i and for each week w, we calculate ܱ/ ܵ,௪ as the options contract 

volume per 100 shares of stock volume: 

ܱ/ ܵ,௪ ൌ
,௪ܮܱܸܱܲ
,௪ܮܱܸܶܵ

, ሺ5ሻ

where ܱܸܱܲܮ,௪ is the weekly sum of the total number of contracts traded across all options listed for 

stock i, and ܸܱܵܶܮ,௪ is the weekly sum of the total stock volume in round lots of 100.5 The second 

measure is the deviation of O/S from its historical average, ∆O/S, calculated as follows: 

∆ܱ/ ܵ,௪ ൌ ܱ/ ܵ,௪ െ ܱ/ పܵ
തതതതതത, ሺ6ሻ

                                                                 
4 Following the literature, we exclude options with about a week or less to expiration. Options with less than 60 days to expiration are often 
grouped in the short-term options category and investigated in aggregate (see, e.g., Bakshi, Kapadia, and Madan, 2003; Xing, Zhang, and 
Zhao, 2010). Our reported results are based on options with short-term maturities. The results are qualitatively unchanged if we include 
options with longer maturities.  
5 This accounts for the fact that each options contract is for 100 shares of the underlying stock. 
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where ܱ/ పܵ
തതതതതത is the average ܱ/ ܵ,௪  for stock i over the past six-month (4 to 28 week) period. This 

second measure controls for time-invariant differences between firms with high and low O/S that are 

unrelated to informed trading. 

The structure of options prices is often represented by the slope of the implied volatility curve 

(Rubinstein, 1994). To estimate the slope of the implied volatility curve, we follow Xing, Zhang, and 

Zhao (2010). We therefore compute ܵܧܭ ܹ,௪ as the difference between the implied volatilities of an 

OTM put and an ATM call, denoted by ܫ ܸ,௪
ை்ெ and ܫ ܸ,௪

்ெ , respectively: 

ܧܭܵ ܹ,௪ ൌ ܫ ܸ,௪
ை்ெ െ ܫ ܸ,௪

்ெ. ሺ7ሻ

A put option is defined as OTM when the moneyness (defined as the strike price divided by the 

closing underlying stock price) is lower than 0.95, and a call option is defined as ATM when the 

moneyness is between 0.95 and 1.05. For each stock and day we select an OTM put and an ATM call 

whose moneyness is closest to one to determine a single SKEW observation for each stock per day. 

We compute the weekly SKEW by taking the week’s average daily SKEW.  

The full sample for this study consists of the intersection of all US firms with non-missing O/S, 

∆O/S, and SKEW measures and available stock return observations. We restrict the sample to firm-

weeks with a minimum of 25 call and 25 put options contracts to address problems with illiquid 

options markets. The total number of firm-weeks is 672,209, corresponding to 826 weeks and 

approximately 1,652 unique firms per year. There are 9,669 firm-weeks in 1996, when the sample 

begins, and 44,681 in 2012, when the sample ends.6 The maximum number of firm-weeks, 51,954, is 

recorded in 2008.  

Panel A of Table 1 presents the descriptive statistics of ܱ/ ܵ,௪ and ܵܧܭ ܹ,௪ for each year of the 

sample. We first compute the mean and quartiles of these options variables over the cross section for 

each week and then report the time series averages of the summary statistics. The sample mean of O/S 

is 6.93%, which indicates that stock trading volumes in round lots are roughly 14 times higher than 

                                                                 
6 The requirement for six months of prior options trading volumes for each observation results in far fewer firm-week observations in 1996. 
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options volumes. The mean O/S is greater than the median O/S throughout the sample period, 

indicating a high concentration of relative options volume among a small subset of firms. The sample 

mean of SKEW is 6.25%, indicating that the implied volatilities of OTM puts are on average higher 

than those of ATM calls by roughly 6%. Also, the mean SKEW is slightly greater than the median 

SKEW during our sample period.  

 

[Table 1 about here] 

 

The last column of Panel A of Table 1 shows the time series average of the weekly cross-

sectional correlations between O/S and SKEW. The correlation is not strong throughout the sample 

period, with the mean of 1.86%. The low correlation between O/S and SKEW implies that they hold 

somewhat independent information. This broadly supports the view that a high options-to-stock-

volume ratio signifies more than a high concentration of negatively informed directional traders in 

options markets, which presumably results in steep volatility skew.  

Panel B of Table 1 reports the summary statistics of other firm characteristics. Firms in our 

sample are large and have low book-to-market ratios relative to an average firm in the CRSP. The 

average market capitalization (SIZE) of our sample firms is $11.92 billion, which is far larger than the 

average firm size of $2.05 billion for all CRSP firms. The average book-to-market (BM) ratio of our 

sample firms is 0.46, which is lower than 0.72 in the CRSP universe. This is not surprising given that 

firms with traded options tend to be large relative to firms without traded options (Mayhew and Mihov, 

2004). In addition, our initial data requirement of non-missing SKEW measures and the weekly 

trading volume of 25 calls and 25 puts further skews our sample toward large firms. Our sample firms 

also tend to have performed well in the past: the average cumulative stock return over the past six 

months (MOMENT) is 13.36% for our sample, whereas it is 5.65% for the average CRSP firm. The 

Amihud (2002) illiquidity measure (AMIHUD) is computed as the daily ratio of absolute return to the 

dollar volume of the stock, averaged over the previous month. The average value of AMIHUD 
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(multiplied by 10) is 0.022 for our sample, far less than the 16.63 for all CRSP firms, implying that 

our sample firms are much more liquid. Correspondingly, our sample firms also tend to be less volatile. 

Historical volatility of stock returns (HVOL) is measured over the previous month using daily stock 

returns. The average value of HVOL is 56% for our sample, and 65% for all CRSP firms.  

Each week, we rank all eligible stocks independently on the basis of SKEW and O/S. We break 

the stocks into three SKEW groups based on the breakpoints for the bottom 30% (flat), middle 40%, 

and top 30% (steep) of the ranked values of SKEW. The stocks are also assigned to one of 10 

portfolios based on O/S. The intersections resulting from the two independent rankings give rise to 30 

SKEW- and O/S-sorted portfolios. We have an average of 814 firms per week, leaving an average of 

roughly 30 firms in each of the SKEW and O/S portfolios.  

Panel B of Table 1 also reports the average firm characteristics for these SKEW and O/S 

portfolios, as well as for the full sample. Rows correspond to the SKEW portfolios, with S3 

representing the portfolio of stocks with the steepest implied volatility smirk. The stock with the 

flattest smirk (S1) has an average slope of 1.06%, the stock with a medium smirk (S2) has an average 

slope of 5.22%, and the stock with the steepest smirk (S3) has an average slope of 12.82%. Columns 

correspond to the O/S deciles, with V10 representing the highest O/S portfolio. O/S increases 

exponentially from 0.57% to 27.58% as one proceeds from V1 to V10. We report descriptive 

characteristics only for two extreme and two intermediate O/S portfolios for simplicity of presentation. 

Looking across each row, we see that high and low O/S portfolios do not differ significantly in terms 

of their SKEW values. Looking down each column, we see that O/S values are of similar magnitudes. 

This is consistent with the low correlation between SKEW and O/S shown in Panel A.  

While O/S shows little variation across SKEW portfolios, levels of both options and equity 

volumes decrease monotonically as one proceeds from the flattest-smirked stocks (S1) to the steepest-

smirked stocks (S3). For instance, the average options trading volume for S1 stocks is 13,619 contracts 

per week, and that of S3 stocks is 7,195. The declining pattern is also shown in the number of call and 
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put contracts traded weekly, denoted by VLC and VLP, respectively. Equity volume in round lots, 

denoted by STVOL, decreases from 144,588 in S1 to 100,723 in S3. 

Extreme SKEW firms tend to be smaller compared to the medium-smirked portfolio. The average 

market capitalization of the stocks first increases from $11.99 billion in S1 to $15.57 billion in S2, and 

subsequently decreases to $6.97 billion in S3. For book-to-market ratios, the steepest-smirked 

portfolio tends to have somewhat larger values, but the difference from the medium-smirked portfolio 

is small. Past stock market performance tends to be lower for firms with steeper volatility smirks: the 

average values of MOMENT decrease monotonically from 14.49% in S1 to 11.26% in S3.  

Extreme SKEW firms tend to be less liquid and more volatile than the medium SKEW firms. The 

Amihud (2002) illiquidity measure (multiplied by 10) is 0.021 and 0.032 for the S1 and S3 stocks, 

respectively, while it is 0.014 for the S2 stocks. The historical volatility of stock returns is 55.23% and 

61.77% for the S1and S3 stocks, respectively, with the latter showing a larger discrepancy from the 

52.55% value for the S2 stocks.  

Unlike asymmetric patterns across the SKEW portfolios, firm characteristics exhibit monotonic 

variation across O/S deciles. As reported by Johnson and So (2012), high O/S firms tend to be larger 

and have lower book-to-market ratios and higher return momentum. In addition, their stock markets 

tend to be more volatile, evident from the HVOL values. In the analysis, we take these heterogeneities 

of firm characteristics across various SKEW and O/S portfolios into account.  

4. Empirical Results 

Our primary goal is to examine how the return predictability of relative option volume varies 

with the shape of the volatility smirk. The analysis is based on portfolio sorts and cross-sectional 

regressions. In Subsection 4.1, we examine returns for portfolios sorted on the relative options volume 

and the slope of the volatility smirk. In Subsection 4.2, we use Fama and MacBeth (1973) regressions 

to investigate the interaction between options volume and volatility smirk in predicting equity returns. 

In Subsection 4.3, we examine the effect of volatility smirks on the persistence of the return 
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predictability by options volume. In Subsection 4.4, we provide the results of the robustness check. 

Finally, in Subsection 4.5, we analyze the interaction between the options volume and volatility smirks 

prior to earnings announcements. 

4.1. Portfolio approach  

In this subsection, we examine returns to portfolios formed based on a two-way sort: one based 

on the volatility smirks (SKEW) and the second based on the relative options volume (i.e., O/S or 

∆O/S). In particular, every five trading days, we form 3 × 10 independently sorted SKEW and O/S 

(∆O/S) portfolios. We skip one trading day between the portfolio formation and holding periods to 

avoid problems caused by nonsynchronous closing times of the stock and options markets.7 We hold 

the portfolios for five consecutive trading days.8 Each portfolio return is calculated as the equally-

weighted average return of its constituent stocks.  

To adjust for systematic risk, we calculate the portfolios’ abnormal returns using the capital asset 

pricing model (CAPM), Fama and French’s (1993) three-factor model, and Carhart’s (1997) four-

factor model. The abnormal return is the constant α in three variants of the following factor model 

regression: 

ܴ௪
 ൌ ߙ  ௪ܨᇱߚ  ߳௪, ሺ8ሻ

where ܴ௪
  is an excess return over the risk-free rate to a portfolio for week w and ܨ௪ is a vector of the 

weekly risk factors.9 The risk factors include excess market returns, a book-to-market factor (ܮܯܪ௪), 

a size factor (ܵܤܯ௪), or a momentum factor (ܷܦܯ௪), depending on the factor model of interest.  

Panel A of Table 2 presents the excess returns and estimated results of the factor models for 

various SKEW and O/S portfolios, as well as for long-short portfolios. We first examine the variation 

                                                                 
7 The equity options market closes at 4:02 PM EST while the underlying equity market closes at 4 PM EST. As pointed out by Battalio and 
Schultz (2006), such nonsynchronicity can result in options prices which contain information not yet reflected in the underlying equity prices. 
8 As in Johnson and So (2012), when there are no trading holidays, we measure the options statistics (O/S and SKEW) over the period from 
Monday through Friday of a given calendar week, skip the Friday close-to-Monday close return, and compute a weekly return from the close 
of markets on Monday to the close of markets on the following Monday (the Monday close-to-Monday close return). 
9 We compute weekly risk factors consistent with our return measurement interval, following the method described on Kenneth French’s 
Web site.  
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of returns across O/S deciles for all firms in the sample. Looking across the rows labeled “All” in 

Subpanel A.1, we observe that portfolio returns decrease with O/S. In the four-factor regression, for 

example, we find that firms in the lowest O/S decile earn, on average, a 2.9 basis points (bps) alpha 

while firms in the highest O/S decile earn a -12.0 bps alpha. The strategy of buying stocks in the 

lowest O/S decile and shorting stocks in the highest O/S decile, V1-V10, yields a four-factor alpha of 

14.9 (t-statistic = 2.90) bps per week (8% annualized). The result is similar in magnitude and statistical 

significance for the CAPM and three-factor models. These results confirm the negative cross-sectional 

relation between O/S and future returns documented by Johnson and So (2012).10 

 

[Table 2 about here] 

 

Because we are interested in the varying return predictability of O/S across stocks with different 

volatility smirk shapes, we next examine the O/S long-short strategy (V1-V10) implemented within 

flattest-smirked (S1), medium-smirked (S2), and steepest-smirked (S3) stocks. The results show that 

the impact of the options volatility smirk is striking. Only among the steepest-smirked (S3) stocks do 

returns to portfolios decrease monotonically with O/S. The O/S long-short strategy is not profitable 

among the flattest- and medium-smirked stocks, but highly profitable among the steepest-smirked 

stocks. For instance, the four-factor alphas of the O/S long-short strategy are 10.8 (t-statistic = 1.37), 

0.2 (t-statistic = 0.03), and 39.7 (t-statistic = 4.90) bps per week in the flattest-, medium-, and steepest-

smirked stocks, respectively. Adjusting for risk using other factor models again makes little difference 

in the results, as is evident from the CAPM and three-factor alphas. 

In Table 2, we also ensure that our results are consistent with Xing, Zhang, and Zhao’s (2010) 

findings that stocks with the steepest volatility smirks in their traded options underperform stocks with 

                                                                 
10 The magnitude of the returns of the O/S portfolio strategy in our sample is lower than that reported in Johnson and So (2012). This 
difference is due to the difference in the samples. First and foremost, unlike Johnson and So (2012), we require that each observation has 
non-missing SKEW measures. This restriction reduces the sample size by 20% and the profitability of the O/S portfolio strategy. When we 
perform the analysis without the restriction of the available SKEW variable, for example, the four-factor alpha of the O/S decile-based 
strategy is 23.1 (t-statistic = 4.59) bps per week. Another, but minor, difference is that the options variables in our sample are computed from 
options expiring within 60 trading days, while Johnson and So (2012) use options expiring within 35 trading days. 
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flatter smirks. Looking down the columns labeled “All” in Subpanel A.1, we observe that returns to 

portfolios decrease with SKEW. For instance, in the four-factor regression, we find that the portfolio 

of stocks in the flattest-smirked group have a 4 bps alpha in the following week while the portfolio of 

stocks in the steepest-smirked group have a -14.5 bps alpha. The strategy of a long position in stocks 

with low SKEW and a short position in stocks with high SKEW, S1-S3, yields a four-factor alpha of 

18.5 (t-statistic = 5.03) bps per week (10% annualized).  

In addition, we observe that the profitability of the SKEW long-short strategy (S1-S3) is in 

general most pronounced among the highest O/S firms. This indicates that the predictive power of the 

options volatility skew is strongest for firms whose options markets attract more trading volume 

relative to stock markets, consistent with the notion that informed traders are more active in high 

volume markets (Admati and Pfleiderer, 1988; Kyle, 1985).  

Subpanel A.2 of Table 2 presents the factor loadings (the estimates of β in Eq. (8)) in the four-

factor model.11 We observe that the loading on the market factor increases with O/S, indicating that 

high O/S firms have more market exposure. High O/S firms also tend to have a large negative loading 

on the HML factor and a high loading on the UMD factor compared to low O/S firms. This is 

consistent with the firm characteristics shown in Panel B of Table 1: high O/S firms tend to be winners 

with low book-to-market ratios. On the other hand, compared to low SKEW firms, high SKEW firms 

tend to have high loadings on the SMB and HML factors and a large negative loading on the UMD 

factor, confirming that high SKEW firms are relatively small and losing. 

Next, we turn to the results for portfolios based on SKEW and ∆O/S. By replacing O/S with 

∆O/S, we mitigate the concern that static firm characteristics which are systematically related to O/S 

but not captured by the four-factor risk adjustment might generate the abnormal returns. Panel B of 

Table 2 shows that the ∆O/S-based portfolio strategy is also profitable. As shown in the rows labeled 

“All” in Subpanel B.1, returns to portfolios decrease with ∆O/S. The strategy of buying stocks in the 

lowest ∆O/S decile and shorting stocks in the highest ∆O/S decile, V1-V10, yields a four-factor alpha 

                                                                 
11 To save space, the factor loadings in the CAPM and three-factor models are not reported. 
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of 15.0 (t-statistic = 3.00) bps per week (8% annualized), suggesting that compensation for a static 

form of risk is not driving the returns on the O/S-based portfolios shown in Panel A.  

Remarkably, the ∆O/S  long-short strategy earns a positive abnormal return only among the 

steepest-smirked (S3) stocks. For instance, the four-factor alphas of the ∆O/S long-short strategy are 

10.1 (t-statistic = 1.25), 3.8 (t-statistic = 0.56), and 31.2 (t-statistic = 3.54) bps per week in flattest-, 

medium-, and steepest-smirked stocks, respectively. Overall, the alphas from the ∆O/S long-short 

strategies implemented for S3 stocks are lower relative to the O/S long-short strategy but remain 

economically and statistically significant for all factor models. As expected, the factor loadings of the 

∆O/S long-short strategy decrease in magnitude compared with those of the O/S long-short strategy. 

Collectively, the results from the double-sorted portfolios based on options volume and volatility 

smirk pinpoint the segment of stocks driving the return predictability of relative options volumes. 

Specifically, the portfolio strategies based on the relative options volume are profitable for stocks with 

the steepest volatility smirks, but not for stocks with less pronounced volatility smirks. These are 

consistent with our proposition that the options volume provides information about directional price 

changes only when directional informed traders initiate more trades in options markets as opposed to 

volatility informed traders, which might be captured by the steep volatility smirk. 

 4.2. Fama-MacBeth regressions 

In this subsection, we use cross-sectional regression analysis to scrutinize how options volumes 

interact with volatility smirks in predicting future stock returns. Based on the theoretical background, 

we propose that high options volumes driven by directional informed traders accompanies steep 

volatility smirks, while volumes driven by volatility informed traders coincides with flat smirks. If so, 

the degree of the return predictability of the options volumes should increase as the options volumes 

accompany a steeper volatility smirk. 
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Table 3 reports Fama-MacBeth coefficient estimates and t-statistics from the regressions of the 

firm’s equity returns on the options market statistics of interest and other control variables.12 In 

particular, each week we run the variants of the following cross-sectional regressions: 

ܧܴ ܶ,௪ ൌ ܽ௪  ܾ௪ܵܧܭ ܹ,௪ିଵ  ܿ௪ܼ,௪ିଵ  ݀௪൫ܼ,௪ିଵ ൈ ܧܭܵ ܹ,௪ିଵ൯  ݁௪ᇱ ,௪ିଵ߆  ߳,௪, ሺ9ሻ

where ܴܧ ܶ,௪is the return on stock i for week w,	ܵܧܭ ܹ,௪ିଵ the volatility skew measure observed for 

options on stock i at week ݓ െ 1, ܼ,௪ିଵ the relative options volume measure of interest, and Θ,௪ିଵ a 

vector of control variables. We use O/S as the relative options volume measure in Panel A and ∆O/S 

in Panel B. The control variables are chosen based on Johnson and So’s (2012) analysis. As before, we 

skip one trading day between observing options variables and stock return measurements. 

 

[Table 3 about here] 

 

We first examine the return predictability of the volatility skew and relative options volumes 

separately. Column 1 of Panel A provides the results of regressing the equity return on the volatility 

skew (and other control variables). The SKEW coefficients have a significantly negative value of -

1.309, indicating that, ceteris paribus, firms in the top 30% skew group underperform firms in the 

bottom 30% skew group by a weekly average of 0.15% (1.309 × (12.82 - 1.06) / 100).13 Regarding the 

O/S measure, we consider three raw and transformed variables in the regressions: the decile rank of 

O/S (in columns 2 through 4), O/S itself (in columns 5 through 7), and the logarithm of O/S (in 

columns 8 through 10).14 In column 2, the coefficient on the deciles of O/S is -0.011, with a significant 

t-statistic of -1.99. This implies that firms in the highest O/S decile underperform firms in the lowest 

O/S decile by a weekly average of 0.10% (0.011 × 9). Consistently, the coefficients on O/S in column 

                                                                 
12 The coefficient estimates shown in the table are the time-series averages of weekly estimates. Standard errors are computed in the usual 
Fama-MacBeth fashion from the time-series standard deviation of coefficient estimates, adjusted for autocorrelation using Newey and West’s 
(1987) method. 
13 The average values of SKEW measured in the top and bottom 30% SKEW groups are 12.82% and 1.06%, respectively, as shown in Panel 
B of Table 1. 
14 From Panel A of Table 1, the distribution of O/S is positively skewed. Using a logarithm is the natural way to address this. 
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5 and the logarithm of O/S in column 8 are significantly negative, corroborating the negative relation 

between the options-to-stock-volume ratio and future returns.15 Overall, we find that the magnitudes of 

the return differences between the firms in the extreme groups of SKEW or O/S implied in the 

estimates are somewhat reduced compared to those in the portfolio approach. This may be because we 

control for numerous firm characteristics with the cross-sectional regression. 

Next, we regress future returns on the volatility skew and relative options volume together. 

Comparing columns 2 and 3, columns 5 and 6, or columns 8 and 9, we find that including the volatility 

skew in the regression does not significantly affect the coefficient on the options volume measure, 

indicating that the predictive ability of relative options volumes is not subsumed by volatility skew. 

The most important observation in Panel A of Table 3 is that the coefficients on the options 

volume variables become insignificant in the presence of the interaction term with SKEW, while the 

coefficients on the interaction term are significantly negative (shown in columns 4, 7, and 10). These 

results suggest that the negative relationship between O/S and future equity returns is pronounced only 

when the options market exhibits a steeper volatility skew. For instance, in column 4, the coefficient 

on the deciles of O/S is 0.003, with a t-statistic of 0.42, while the coefficient on the interaction term 

(Decile	ሺO/Sሻ ൈ  is -0.195, with a t-statistic of -3.26. These coefficients imply that for firms in (ܹܧܭܵ

the bottom 30% skew group, the difference in future returns between the highest and lowest O/S decile 

is 0.01% ((0.003 - 0.195 × 1.06 / 100) × 9) per week, while it is -0.20% ((0.003 - 0.195 × 12.82 / 100) 

× 9) per week for firms in the top 30% skew group.16 We also find similar results from the regressions 

using O/S and the logarithm of O/S (reported in columns 7 and 10).17  

                                                                 
15 The average values of O/S in the highest and lowest O/S deciles are 27.58% and 0.57%, respectively, as shown in Panel B of Table 1. Thus, 
the coefficient on O/S in column 5, -0.393, indicates that the firms in the highest O/S decile underperform firms in the lowest O/S decile by a 
weekly average of 0.11% (0.393 × (27.58 - 0.57)/100). Additionally, the coefficient on the logarithm of O/S in column 8 is -0.031, indicating 
that the highest O/S decile firms underperform the lowest decile firms by a weekly average of 0.12% (0.031 × (ln(27.58) - ln(0.57))). 
16 The average values of SKEW measure in the bottom and top 30% SKEW groups are 1.06% and 12.82%, respectively, as shown in Panel B 
of Table 1. 
17 In column 7, the coefficients on O/S and its interaction term with SKEW are 0.021 (t-statistic = 0.08) and -4.875 (t-statistic = -2.15), 
respectively. These coefficients imply that the difference in future returns between the highest and lowest O/S decile firms is -0.01% ((0.021 
- 4.875 × 1.06 / 100) × (27.58 - 0.57) / 100) per week for firms in the S1 group, while it is -0.16% ((0.021 - 4.875 × 12.82 / 100) × (27.58 - 
0.57) / 100) per week for firms in the S3 group. In column 10, the coefficients on the logarithm of O/S and its interaction term with SKEW 
are 0.007 (t-statistic = 0.36) and -0.504 (t-statistic = -3.36), respectively. These coefficients imply that the difference in future returns 
between the highest and lowest O/S decile firms is 0.01% ((0.007 - 0.504 × 1.06 / 100) × (ln(27.58) - ln(0.57))) per week for firms in the S1 
group, while it is -0.22% ((0.007 - 0.504 × 12.82 / 100) × (ln(27.58) - ln(0.57))) per week for firms in the S3 group. 
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In Panel B of Table 3, we repeat the regressions in Panel A but replace O/S with ∆O/S and 

consider two alternative ∆O/S-based variables in the regressions: deciles of ∆O/S  (in columns 2 

through 4) and ∆O/S itself (in columns 5 through 7). As in Panel A, we find strong evidence that 

before introducing the interaction term with the volatility skew, the options volume variable (the 

deciles of ∆O/S or ∆O/S itself) has a negative and statistically significant coefficient. When including 

the interaction term, however, the coefficients on the options volume variables become insignificant. 

Most notably, the coefficients on the interaction term are negative and statistically significant, 

suggesting that abnormally high levels of O/S can predict negative future returns only for stocks with 

steep volatility smirks. 

In Table 4, we use the alternative specifications to examine the differing levels of predictability 

by the relative options volume across stocks with the flat versus steep volatility smirks. We introduce 

dummy variables for the three SKEW groups: 

ܧܴ ܶ,௪ ൌ ܽ௪  ܾଵ௪ܹܵܧܭ	ݐݏ1	݉ݑܦ,௪ିଵ  ܾଶ௪ܹܵܧܭ ݀ݎ3 ,௪ିଵ݉ݑܦ  ܿ௪ܼ,௪ିଵ 

݀ଵ௪൫ܼ,௪ିଵ ൈ ,௪ିଵ൯݉ݑܦ	ݐݏ1	ܹܧܭܵ  ݀ଶ௪൫ܼ,௪ିଵ ൈ ܹܧܭܵ ݀ݎ3 ,௪ିଵ൯݉ݑܦ  ݁௪ᇱ ,௪ିଵ߆  ߳,௪,
ሺ10ሻ

where ܹܵܧܭ	1st	݉ݑܦ,௪ିଵ (ܹܵܧܭ	3rd	݉ݑܦ,௪ିଵ) is a dummy variable that takes the value of one 

if stock i’s SKEW value belongs to the bottom (top) 30% of all ranked values of SKEW at week ݓ െ

1 and zero otherwise.  

 

[Table 4 about here] 

 

Panels A and B of Table 4 present the results for O/S- and ∆O/S-based variables as the options 

volume measure, respectively. Regardless of the choice of options volume variable, we find that the 

coefficients on both the options volume variable and its interaction term with SKEW 1st Dum are 

insignificant. By contrast, the coefficient on the interaction term with SKEW 3rd Dum is negative and 
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highly significant. These results indicate that a high options-to-stock-volume ratio is predictive of 

negative future returns for stocks with the steepest volatility smirks, but not for the flattest- and 

medium-smirked stocks. 

Overall, the regression-based evidence is consistent with our portfolio-based findings in the 

previous section. Across all specifications, we find that a high options-to-stock-volume ratio 

accompanied by steep volatility smirks is a significant negative predictor of future equity returns, 

while that accompanied by the flat volatility smirks has no predictive power for directional price 

changes.  

4.3. How long does the predictability last? 

The previous sections demonstrate that the return predictability of relative options volumes 

differs across stocks with different volatility smirks. In this subsection, we examine the persistence of 

the differing predictability using two approaches: first, we investigate long-term returns of the O/S 

(∆O/S)-based portfolio strategies by groups of stocks with different volatility smirks; second, we 

investigate whether relative options volumes interacting with volatility skew has predictive power for 

n-week-ahead stock returns using cross-sectional regressions. 

Figure 3 shows for each SKEW group, S1 to S3, the four-factor alphas of the O/S long-short 

strategies over a twelve week period after portfolio formation. The top graph represents weekly alphas 

and their 95% confidence interval. The bottom graph presents the cumulative alphas. The top graph 

shows that for the steepest smirked (S3) stocks, the lower bound of the 95% confidence interval is 

above zero up to six weeks, indicating that the profitability of the O/S strategy persists for six weeks. 

By contrast, for stocks with less pronounced smirks (S1 and S2), the alphas are statistically 

indistinguishable from zero for the entire time horizon (except the second week, where alpha is 

significantly positive for S1 stocks). The bottom graph shows the striking differences in the 

persistence of return predictability among SKEW groups. Over the twelve weeks, the four-factor 
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alphas of the O/S long-short strategy total more than 2% for the S3 stocks, while the cumulative 12-

week alphas are less than 0.7% for the S1 and S2 stocks. 

 

[Figure 3 about here] 

 

Figure 4 repeats the analysis of Figure 3, but with the ∆O/S long-short strategies. Again, among 

the S1 and S2 stocks, the lower bound of the 95% confidence interval is below zero for all twelve 

weeks. Only among the S3 stocks is the lower bound of the 95% confidence interval above zero but 

only for one week ahead. The bottom graph shows that the cumulative 12-week alpha is less than 0.25% 

for the S1 and S2 stocks, but reaches 1% for the S3 stocks. The return predictability associated with 

∆O/S is relatively week and short-lived compared to O/S.  

 

[Figure 4 about here] 

 

Table 5 reports Fama-MacBeth regression results where we repeat the analysis in Table 3 

(column 4), but with one- to twelve-week-ahead returns as the dependent variable. We use deciles of 

O/S and ∆O/S as the relative options volume measure in Panels A and B, respectively. All control 

variables specified in Table 3 are included in the estimation, though not reported in the table. The 

main coefficients of interest in Panels A and B are those on deciles of relative options volume and its 

interaction term with volatility skew. We observe that the coefficients on the decile variable itself are 

insignificant across all horizons, but with significantly negative coefficients on the interaction term up 

to four weeks (one week) in Panel A (Panel B). The regression-based evidence is broadly consistent 

with the results shown in Figures 3 and 4. In particular, the return predictability of relative options 

volume, to a lesser or greater extent depending on which measure of O/S or ∆O/S in use, exists and 

persists only among the steep-smirked stocks. 
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[Table 5 about here] 

 

4.4. Robustness 

Table 6 presents several robustness checks on our results with the portfolio approach. In 

Subpanel A.1, we repeat the analysis in Panel A of Table 2 for two sub-periods: The first covers 1996 

to 2003, and the second covers 2004 to 2012. Subpanel A.1 demonstrates the striking impact of 

volatility smirks on the return predictability of O/S. In the first sub-period, the overall profitability of 

the O/S long-short strategy disappears. Partitioning the firms on the basis of volatility smirks, however, 

shows that the O/S strategy delivers large profits among stocks exhibiting steep smirks. For example, 

the O/S strategy implemented for all firms generates an insignificant three-factor alpha of 10.7 (t-

statistic = 1.17) bps per week between 1996 and 2003, but when implemented within the steepest 

smirked stocks (S3) it earns a significant alpha of 46.3 (t-statistic = 3.26) bps per week. Likewise, 

results in the second sub-period show that the O/S strategy is profitable only among the S3 stocks. 

Comparison across the two sub-samples suggests that the profitability of the O/S strategy among the 

S3 stocks decreases in the 2004-2012 period.  

 

[Table 6 about here] 

 

Our portfolio results so far are based on three skew portfolios and ten options volume portfolios 

(3 × 10). Subpanel A.2 of Table 6 shows that our results are not specific to this partitioning. In 

particular, we report results using five skew and five options volume portfolios (5 × 5). Generally, the 

difference in returns between the lowest and highest O/S quintile portfolios would be lower relative to 

the difference between extreme O/S decile portfolios. In fact, Subpanel A.2 shows that the three-factor 

alpha of the O/S quintile strategy is 9.8 bps per week, lower than the corresponding value of the O/S 
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decile strategy (14.0 bps per week) shown in Table 2. Of particular interest is the variation in returns 

to O/S quintile strategies across SKEW quintiles. The rightmost column in Subpanel A.2 shows that 

the three-factor alpha of the O/S quintile strategy is significantly positive only for the steepest smirked 

stocks (S5).  

We also provide robustness checks on results using ∆O/S in Panel B of Table 6. Subpanel B.1 

shows that in both sub-samples 1996-2003 and 2004-2012, the ∆O/S decile strategy is only profitable 

among the steepest smirked stocks, with higher profitability in the earlier period. Using five-by-five 

double sorted portfolios on ∆O/S and SKEW, Subpanel B.2 again shows that the return predictability 

of ∆O/S exists only when accompanied by steep smirks.  

4.5. Options trading volume, volatility smirk, and earnings surprises 

In this subsection, we examine whether options volume interacting with volatility smirks 

foreshadows future earnings news. If high options volume accompanied by steep volatility smirks is 

indeed driven by directional informed traders, then its informativeness should be pronounced around 

the release of significant firm-specific information such as earnings announcements.18  

Table 7 contains a series of Fama-MacBeth regressions, where we regress the upcoming earnings 

surprise on volatility smirks, deciles of relative options volume, and their interaction term, separately 

and together. We use four measures to capture the news released at earnings announcements. The first 

earnings surprise measure, SURPRISE1, is the difference between the firm’s actual quarterly earnings 

per share (EPS) and the analysts’ consensus forecast on EPS, divided by the beginning-of-quarter 

stock price. The second measure, SURPRISE2, is the difference between actual EPS and analysts’ 

EPS forecasts, scaled by the standard deviation of this difference over the previous eight quarters. The 

third measure, SUE1, is the standardized unexpected earnings defined as the seasonally adjusted EPS 

(i.e., the current quarter EPS minus the EPS in the same quarter of the previous fiscal year), divided by 

                                                                 
18 Informed traders’ activity increases around information events. Amin and Lee (1997) document the abnormally high trading volume in 
options markets prior to earnings announcements and its role in the dissemination of earnings news. Consistently, Roll, Schwartz, and 
Subrahmanyam (2010) show that options volume relative to stock volume increases substantially around earnings announcements. 
Additionally, Atilgan (2014) reports that the return predictability of the difference between put and call volatilities is much stronger during 
earnings announcements than in normal times.  
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the beginning-of-quarter stock price. The final measure, SUE2, is the seasonally adjusted EPS divided 

by its standard deviation over the previous eight quarters. 

 

[Table 7 about here] 

 

In Table 7, the first two columns for each earnings surprise measure present the results of future 

earnings surprise regressions on SKEW and deciles of O/S, respectively. The coefficient estimates are 

broadly consistent with the findings in prior studies.19 In separate regressions, both the volatility smirk 

and relative options volume are shown to be strong negative predictors of future earnings news.  

Of primary interest in Table 7 is the interaction effect between options volume and volatility 

smirks, shown in the last column for each earnings surprise measure. Notably, the coefficients on the 

interaction term between the deciles of O/S and SKEW are negative and statistically significant for all 

earnings surprise measures. In addition, both the magnitude and statistical significance of the 

coefficients on O/S are greatly reduced in the presence of the interaction term, compared to those from 

the regressions without the interaction term. Taken together, the results in Table 7 indicate that a high 

options-to-stock-volume ratio accompanied by steep volatility smirks possesses a greater predictive 

power for negative earning news than when it is not accompanied by steep smirks.  

5. Conclusion 

Both directional and volatility information about stock price have been known to drive trading in 

options market. Numerous studies have investigated the informational link between options market 

and stock market, but they typically focused only on one type of informed trading. In this paper, we 

extend the prior research by considering the distinct types of informed trading in a unified framework. 

By doing so, we shed light on the question about how the relative significance of directional versus 

                                                                 
19 Xing, Zhang, and Zhao (2010) find that firms with steep volatility smirks experience negative earnings shocks in the future. Johnson and 
So (2012) show that a high options-to-stock-volume ratio predicts negative earnings surprises. 
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volatility informed trading in options market affects the information flows between options and their 

underlying stocks markets. 

In particular, we extend the Easley, O’Hara, and Srinivas (1998) model by accommodating 

volatility informed trading in addition to directional informed trading. Our model predicts that options 

trades motivated by directional information about underlying security prices are negatively linked with 

future equity prices in the presence of short-sales costs and accompany steep volatility smirk, while 

there is no such relationship when volatility structure is flat.  

We test the theoretical prediction by analyzing the interaction between options volume and 

volatility smirk in predicting the cross-section of stock returns. The empirical results, based on 

portfolio sorts and cross-sectional regressions, show that negative relationship between relative 

options volume and future stock returns documented in Johnson and So (2012) is concentrated in 

stocks exhibiting a steep volatility smirk. Specifically, when accompanied by the steep smirk, stocks 

with the lowest options-to-stock-volume ratio outperform stocks with the highest ratio by 0.40% in the 

subsequent week. However, the return predictability of the options-to-stock-volume ratio disappears 

for stocks with flat smirk. These results highlight the need to discriminate between the two distinct 

options trading motives in examining the links between the options and stock markets. 
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Appendix A. Separating and pooling equilibria 

Our approach to calculating the necessary and sufficient conditions for pooling equilibrium is 

essentially identical to Easley, O’Hara, and Srinivas (1998). That is, we determine the conditions 

under which the equilibrium will involve ߟுௌ, ,ுߟ ,ௌߟ ,ߟ ,ுߞ   .<1ߞ

Before investigating, we make a simplifying assumption. To keep the model tractable, we use a 

Taylor series expansion to approximate the option prices. We first calculate the unconditional 

expected values of the future stock price and volatility, denoted by ܵ∗ሺൌ ሺܵு  ܵሻ 2⁄ ሻ and ߪ∗ሺൌ

ሺߪு  ሻߪ 2⁄ ሻ, respectively. Then we define ܥ∗ ≡ ,∗ሺܵܥ ∗ܲ ሻ and∗ߪ ≡ ܲሺܵ∗,  ሻ. Taking a first-order∗ߪ

Taylor series expansion of call and put option prices around (ܵ∗,   :yields (∗ߪ

,ሺܵௗܥ ௩ሻߪ ൌ ∗ܥ	  ሺܵௗ െ ܵ∗ሻ߂  ሺߪ௩ െ ,ߘሻ∗ߪ ݀ ൌ ,ܪ ,ܮ ܽ݊݀ ݒ ൌ ,ܪ 	,ܮ ሺ11ሻ

ܲሺܵௗ, ௩ሻߪ ൌ 	ܲ∗  ሺܵௗ െ ܵ∗ሻΔ  ሺߪ௩ െ ,ሻ∗ߪ ݀ ൌ ,ܪ ,ܮ and ݒ ൌ ,ܪ 	,ܮ ሺ12ሻ

where ∆ is the delta of an option (rate of change of the option price with respect to the price of the 

underlying stock) and  is the vega of an option (rate of change of the option price with respect to the 

volatility of the underlying stock).  

Taking advantage of this approximation, the conditional and unconditional expectations of option 

prices can be calculated simply: 	Eൣܥሚห ሚܵ ൌ ܵ൧ ൌ ∗ܥ െ ሺܵு െ ܵሻ∆/2 ; 	Eൣܥሚห ሚܵ ൌ ܵு൧ ൌ ∗ܥ 

ሺܵு െ ܵሻ∆/2 ; 	Eൣܥሚหߪ ൌ ൧ߪ ൌ ∗ܥ െ ሺܵு െ ܵሻ/2 ; 	Eൣܥሚหߪ ൌ ு൧ߪ ൌ ∗ܥ  ሺܵு െ ܵሻ/2 ; 	Eൣܥሚ൧ ൌ

∗ܥ ; 	Eൣ ෨ܲห ሚܵ ൌ ܵ൧ ൌ ܲ∗  ሺܵு െ ܵሻ|∆|/2 ; 	Eൣ ෨ܲห ሚܵ ൌ ܵு൧ ൌ ܲ∗ െ ሺܵு െ ܵሻ|∆|/2 ; 	Eൣ ෨ܲหߪ ൌ ൧ߪ ൌ

ܲ∗ െ ሺܵு െ ܵሻ/2;	Eൣ ෨ܲหߪ ൌ ு൧ߪ ൌ ܲ∗  ሺܵு െ ܵሻ/2;	Eሾ ෨ܲሿ ൌ ܲ∗.  

Now we determine the pooling equilibrium conditions for two extreme cases: one where δ ൌ 0 

and the other where δ ൌ 1. We provide the calculations for the case where δ ൌ 0 and traders are 

informed that ሚܵ ൌ ܵ. Suppose ߟௌ=1, then we find conditions where the informed trader’s profit from 

trading the options exceeds the profit from trading the stock. Given ߟௌ=1, the expected profit from 

selling the stock is 
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γሺ1 െ ሻߩ
ሺܵு െ ܵሻ

2
2ሺ1 െ ଶݍሻߙ

ߙ  2ሺ1 െ ଶݍሻߙ
.

ሺ13ሻ

The expected profit from selling the call (if ߟௌ=1) is  

θ
ሺܵு െ ܵሻ∆

2
,

ሺ14ሻ

and the expected profit from buying the put (if ߟௌ=1) is 

θ
ሺܵு െ ܵሻ|∆|

2
.

ሺ15ሻ

These profit conditions dictate that some ܵ-informed traders will use options (i.e., ߟௌ<1) if  

ߠ
ߛ


ሺ1 െ ሻߩ

maxሼ∆, |∆|ሽ
∙

2ሺ1 െ ଶݍሻߙ
ߙ  2ሺ1 െ ଶݍሻߙ

.
ሺ16ሻ

Similarly, suppose ߟ=1. The expected profit from selling the stock (if ߟ=1) is 

γሺ1 െ ሻߩ
ሺܵு െ ܵሻ

2
.

ሺ17ሻ

The expected profit from selling the call (if ߟ=1) is  

θ
ሺܵு െ ܵሻ∆

2
2ሺ1 െ ସݍሻߙ

ߙ  2ሺ1 െ ସݍሻߙ
,

ሺ18ሻ

and the expected profit from buying the put (if ߟ=1) is 

θ
ሺܵு െ ܵሻ|∆|

2
.

ሺ19ሻ

These profit conditions dictate that some ܵ-informed traders will sell the stock or buy the put (i.e., 

  <1) ifߟ

ߠ
ߛ
൏
ሺ1 െ ሻߩ

∆
∙
ߙ  2ሺ1 െ ସݍሻߙ
2ሺ1 െ ସݍሻߙ

ݎ
∆
|∆|

൏
ߙ  2ሺ1 െ ସݍሻߙ
2ሺ1 െ ସݍሻߙ

.
ሺ20ሻ

Similarly, suppose 1 െ ௌߟ െ  is (=0ߟ=ௌߟ if) =1. The expected profit from selling the stockߟ

γሺ1 െ ሻߩ
ሺܵு െ ܵሻ

2
ሺ21ሻ
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The expected profit from selling the call (if ߟௌ=ߟ=0) is  

θ
ሺܵு െ ܵሻ∆

2
,

ሺ22ሻ

and the expected profit from buying the put (if ߟௌ=ߟ=0) is 

θ
ሺܵு െ ܵሻ|∆|

2
2ሺ1 െ ହݍሻߙ

ߙ  2ሺ1 െ ହݍሻߙ
.

ሺ23ሻ

These profit conditions dictate that some ܵ-informed traders will sell the stock or sell the call (i.e., 

1 െ ௌߟ െ   <1) ifߟ

ߠ
ߛ
൏
ሺ1 െ ሻߩ
|∆|

∙
ߙ  2ሺ1 െ ହݍሻߙ
2ሺ1 െ ହݍሻߙ

ݎ
2ሺ1 െ ହݍሻߙ

ߙ  2ሺ1 െ ହݍሻߙ
൏

∆
|∆|

.
ሺ24ሻ

A similar logic applies to the ܵு-informed traders, resulting in the following conditions. Given 

that δ ൌ 0, some ܵு-informed traders will use options (i.e., ߟுௌ<1) if  

ߠ
ߛ


1
maxሼ∆, |∆|ሽ

∙
2ሺ1 െ ଵݍሻߙ

ߙ  2ሺ1 െ ଵݍሻߙ
,

ሺ25ሻ

and they will buy the stock or sell the put (i.e., ߟு<1) if 

ߠ
ߛ
൏

1
∆

∙
ߙ  2ሺ1 െ ଷݍሻߙ
2ሺ1 െ ଷݍሻߙ

ݎ
∆
|∆|

൏
ߙ  2ሺ1 െ ଷݍሻߙ
2ሺ1 െ ଷݍሻߙ

,
ሺ26ሻ

and they will buy the stock or buy the call (i.e., 1 െ ுௌߟ െ  ு<1) ifߟ

ߠ
ߛ
൏

1
|∆|

∙
ߙ  2ሺ1 െ ݍሻߙ
2ሺ1 െ ݍሻߙ

ݎ
2ሺ1 െ ݍሻߙ

ߙ  2ሺ1 െ ݍሻߙ
൏

∆
|∆|

.
ሺ27ሻ

Similarly, we draw the following equilibrium conditions for the case where δ ൌ 1. Some ߪ-

informed traders will use call options and others will use put options (i. e. , 0 ൏ ߞ ൏ 1) if 

2ሺ1 െ ݍሻߙ
ߙ  2ሺ1 െ ݍሻߙ

൏



൏
ߙ  2ሺ1 െ ସݍሻߙ
2ሺ1 െ ସݍሻߙ

.
ሺ28ሻ

Some ߪு-informed traders will use call options and others will use put options (i. e. , 0 ൏ ுߞ ൏ 1) if 
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2ሺ1 െ ହݍሻߙ
ߙ  2ሺ1 െ ହݍሻߙ

൏



൏
ߙ  2ሺ1 െ ଷݍሻߙ
2ሺ1 െ ଷݍሻߙ

.
ሺ29ሻ

Appendix B. Simultaneous equations  

The full set of simultaneous equations that characterize the pooling equilibrium are as follows:  

ܾௌ ൌ
ሺ1ߙ െ ሻߜ

1
2 ௌܵߟ  ሺ1 െ ଶݍሻߙ

1
2 ሺܵு  ܵሻ

ሺ1ߙ െ ሻߜ
1
2 ௌߟ  ሺ1 െ ଶݍሻߙ

,
ሺ30ሻ

ܽௌ ൌ
ሺ1ߙ െ ሻߜ

1
2 ுௌܵுߟ  ሺ1 െ ଵݍሻߙ

1
2 ሺܵு  ܵሻ

ሺ1ߙ െ ሻߜ
1
2 ுௌߟ  ሺ1 െ ଵݍሻߙ

,
ሺ31ሻ

ܾ ൌ
ሺ1ߙ െ ሻߜ

1
2 ܥൣܧߟ

ሚ| ሚܵ ൌ ܵ൧  ߜߙ
1
2 ܥൣܧߞ

ሚ|ߪ ൌ ൧ߪ  ሺ1 െ ሚ൧ܥൣܧସݍሻߙ

ሺ1ߙ െ ሻߜ
1
2 ߟ  ߜߙ

1
2 ߞ  ሺ1 െ ସݍሻߙ

,	
ሺ32ሻ

ܽ ൌ
ሺ1ߙ െ ሻߜ

1
2 ܥൣܧுߟ

ሚ| ሚܵ ൌ ܵு൧  ߜߙ
1
2 ܥൣܧுߞ

ሚ|ߪ ൌ ு൧ߪ  ሺ1 െ ሚ൧ܥൣܧଷݍሻߙ

ሺ1ߙ െ ሻߜ
1
2 ுߟ  ߜߙ

1
2 ுߞ  ሺ1 െ ଷݍሻߙ

,	
ሺ33ሻ

ܾ ൌ
ሺ1ߙ െ ሻߜ

1
2 ሺ1 െ ுௌߟ െ ൣܧுሻߟ ෨ܲ| ሚܵ ൌ ܵு൧  ߜߙ

1
2 ሺ1 െ ሾܧሻߞ ෨ܲ|ߪ ൌ ሿߪ  ሺ1 െ ሾܧݍሻߙ ෨ܲሿ

ሺ1ߙ െ ሻߜ
1
2 ሺ1 െ ுௌߟ െ ுሻߟ  ߜߙ

1
2 ሺ1 െ ሻߞ  ሺ1 െ ݍሻߙ

,	
ሺ34ሻ

ܽ ൌ
ሺ1ߙ െ ሻߜ

1
2 ሺ1 െ ௌߟ െ ൣܧሻߟ ෨ܲ| ሚܵ ൌ ܵ൧  ߜߙ

1
2 ሺ1 െ ሾܧுሻߞ ෨ܲ|ߪ ൌ ுሿߪ  ሺ1 െ ሾܧହݍሻߙ ෨ܲሿ

ሺ1ߙ െ ሻߜ
1
2 ሺ1 െ ௌߟ െ ሻߟ  ߜߙ

1
2 ሺ1 െ ுሻߞ  ሺ1 െ ହݍሻߙ

,	
ሺ35ሻ

γሺെܽ௦  ܵுሻ ൌ θ൫െܽ  ሚหܥൣܧ ሚܵ ൌ ܵுሿ൯,
ሺ36ሻ

γሺെܽ௦  ܵுሻ ൌ θ൫ܾ െ ሾܧ ෨ܲห ሚܵ ൌ ܵுሿ൯,
ሺ37ሻ

γሺܾ௦ െ ܵሻሺ1 െ ሻߩ ൌ θ൫ܾ െ ሚหܥൣܧ ሚܵ ൌ ܵሿ൯,
ሺ38ሻ
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γሺܾ௦ െ ܵሻሺ1 െ ሻߩ ൌ θ൫െܽ  ሾܧ ෨ܲห ሚܵ ൌ ܵሿ൯,
ሺ39ሻ

θ൫െܽ  ߪሚหܥൣܧ ൌ ுሿ൯ߪ ൌ θ൫െܽ  ሾܧ ෨ܲหߪ ൌ ,ுሿ൯ߪ
ሺ40ሻ

θ൫ܾ െ ߪሚหܥൣܧ ൌ ሿ൯ߪ ൌ θ൫ܾ െ ሾܧ ෨ܲหߪ ൌ .ሿ൯ߪ
ሺ41ሻ

Eqs. (30) - (35) are the zero profit conditions for the market maker. Eq. (30) (Eq. (31)), for example, 

ensures that the bid (ask) price for a stock is exactly its expected value given that a trader wants to sell 

(buy) it to the market maker. Eqs. (36) - (41) ensure that informed traders are indifferent among 

possible trades: Eqs. (36) and (37) ensure that directional informed traders who know that ሚܵ ൌ ܵு are 

indifferent between buying stocks, buying calls, and shorting puts; Eqs. (38) and (39) ensure that 

directional informed traders who know that ሚܵ ൌ ܵ are indifferent between shorting stocks, shorting 

calls, and buying puts; Eq. (40) ensures that volatility informed traders who know that ߪ ൌ  ு areߪ

indifferent between buying calls and buying puts; Eq. (41) ensures that volatility informed traders who 

know that ߪ ൌ   . are indifferent between shorting calls and shorting putsߪ

To obtain a closed form solution for simultaneous equations, we use a Taylor series 

approximation of the option prices given in Eqs. (11) and (12). Then Eqs. (30) - (41) can be rewritten 

as follows:  

ܾௌ ൌ ܵ∗ െ
ሺܵு െ ܵሻ

2
ሺ1ߙ െ ௌߟሻߜ

ሺ1ߙ െ ௌߟሻߜ  2ሺ1 െ ଶݍሻߙ
,

ሺ42ሻ

ܽௌ ൌ ܵ∗ 
ሺܵு െ ܵሻ

2
ሺ1ߙ െ ுௌߟሻߜ

ሺ1ߙ െ ுௌߟሻߜ  2ሺ1 െ ଵݍሻߙ
,

ሺ43ሻ

ܾ ൌ ∗ܥ െ
ሺܵு െ ܵሻ߂

2

ሺ1ߙ െ ߟሻߜ  ߞߜߙ
ሺߪு െ ߘሻߪ
ሺܵு െ ܵሻ߂

ሺ1ߙ െ ߟሻߜ  ߞߜߙ  2ሺ1 െ ସݍሻߙ
,

ሺ44ሻ

ܽ ൌ ∗ܥ 
ሺܵு െ ܵሻ߂

2

ሺ1ߙ െ ுߟሻߜ  ுߞߜߙ
ሺߪு െ ߘሻߪ
ሺܵு െ ܵሻ߂

ሺ1ߙ െ ுߟሻߜ  ுߞߜߙ  2ሺ1 െ ଷݍሻߙ
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ܾ ൌ ܲ∗ െ
ሺܵு െ ܵሻሺെ߂ሻ

2

ሺ1ߙ െ ሻሺ1ߜ െ ுௌߟ െ ுሻߟ  ሺ1ߜߙ െ ሻߞ
ሺߪு െ ߘሻߪ

ሺܵு െ ܵሻሺെ߂ሻ
ሺ1ߙ െ ሻሺ1ߜ െ ுௌߟ െ ுሻߟ  ሺ1ߜߙ െ ሻߞ  2ሺ1 െ ݍሻߙ

,	
ሺ46ሻ

ܽ ൌ ܲ∗ 
ሺܵு െ ܵሻሺെ߂ሻ

2
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ሺ47ሻ
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ሺ1ߙ െ ሻሺ1ߜ െ ுௌߟ െ ுሻߟ  ሺ1ߜߙ െ ሻߞ  2ሺ1 െ ݍሻߙ
,
ሺ49ሻ

γሺ1 െ ሻߩ
ሺܵு െ ܵሻ

2
2ሺ1 െ ଶݍሻߙ

ሺ1ߙ െ ௌߟሻߜ  2ሺ1 െ ଶݍሻߙ
ൌ θ

ሺܵு െ ܵሻΔ
2

ߞߜߙ ൬1 െ
ሺߪு െ ሻߪ
ሺܵு െ ܵሻΔ

൰  2ሺ1 െ ସݍሻߙ

ሺ1ߙ െ ைߟሻߜ  ߞߜߙ  2ሺ1 െ ସݍሻߙ
,	

ሺ50ሻ

γሺ1 െ ሻߩ
ሺܵு െ ܵሻ

2
2ሺ1 െ ଶݍሻߙ

ሺ1ߙ െ ௌߟሻߜ  2ሺ1 െ ଶݍሻߙ

ൌ θ
ሺܵு െ ܵሻሺെΔሻ

2

ሺ1ߜߙ െ ுሻߞ ൬1 െ
ሺߪு െ ሻߪ

ሺܵு െ ܵሻሺെΔሻ
൰  2ሺ1 െ ହݍሻߙ

ሺ1ߙ െ ሻሺ1ߜ െ ௌߟ െ ሻߟ  ሺ1ߜߙ െ ுሻߞ  2ሺ1 െ ହݍሻߙ
,	

ሺ51ሻ

θ൮െ
ሺܵு െ ܵሻΔ

2

ሺ1ߙ െ ுߟሻߜ  ுߞߜߙ
ሺߪு െ ሻߪ
ሺܵு െ ܵሻΔ

ሺ1ߙ െ ுߟሻߜ  ுߞߜߙ  2ሺ1 െ ଷݍሻߙ

ሺߪு െ ሻߪ

2
൲

ൌ θ൮െ
ሺܵு െ ܵሻሺെΔሻ

2

ሺ1ߙ െ ሻሺ1ߜ െ ௌߟ െ ሻߟ  ሺ1ߜߙ െ ுሻߞ
ሺߪு െ ሻߪ

ሺܵு െ ܵሻሺെΔሻ
ሺ1ߙ െ ሻሺ1ߜ െ ௌߟ െ ሻߟ  ሺ1ߜߙ െ ுሻߞ  2ሺ1 െ ହݍሻߙ


ሺߪு െ ሻߪ

2
൲,

ሺ52ሻ

θ൮െ
ሺܵு െ ܵሻΔ

2

ሺ1ߙ െ ߟሻߜ  ߞߜߙ
ሺߪு െ ሻߪ
ሺܵு െ ܵሻΔ

ሺ1ߙ െ ߟሻߜ  ߞߜߙ  2ሺ1 െ ସݍሻߙ

ሺߪு െ ሻߪ

2
൲

ൌ θ൮െ
ሺܵு െ ܵሻሺെΔሻ

2

ሺ1ߙ െ ሻሺ1ߜ െ ுௌߟ െ ுሻߟ  ሺ1ߜߙ െ ሻߞ
ሺߪு െ ሻߪ

ሺܵு െ ܵሻሺെΔሻ
ሺ1ߙ െ ሻሺ1ߜ െ ுௌߟ െ ுሻߟ  ሺ1ߜߙ െ ሻߞ  2ሺ1 െ ݍሻߙ


ሺߪு െ ሻߪ

2
൲.

ሺ53ሻ

Eqs. (42) - (47) show that, as is usually the case in a world of asymmetric information, the bid-ask 

spread develops around the unconditional expected value of the asset. Notice that the bid-ask spread 
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depends on the range of possible future values of the asset and the expected presence of informed 

traders in the market. 

Appendix C. Proofs of propositions 

We restrict our attention throughout to an out-of-the-money (OTM) put option and an at-the-

money (ATM) call option to avoid difficulties connected with varying exercise prices. Then, the deltas 

and vegas of the options satisfy ∆ |∆| and   . Also, we assume that uninformed demand 

satisfies ݍଵ ൌ ଶݍ ൌ ଷݍ ൌ ସݍ ൌ ହݍ ൌ ≡ሺݍ ሻݍ  for simplicity because our goal is to examine the 

impacts of directional and volatility informed traders. This simplifies the pooling equilibrium 

conditions as follows: 

Given δ ൌ 0, 0 ൏ ,ுௌߟ ,ுߟ ,ௌߟ ߟ ൏ 1	if 

1
∆

∙
2ሺ1 െ ݍሻߙ

ߙ  2ሺ1 െ ݍሻߙ
൏
ߠ
ߛ
൏
1 െ ߩ
∆

∙
ߙ  2ሺ1 െ ݍሻߙ
2ሺ1 െ ݍሻߙ

,
ሺ54ሻ

and 

∆
|∆|

൏
ߙ  2ሺ1 െ ݍሻߙ
2ሺ1 െ ݍሻߙ

.
ሺ55ሻ

Given δ ൌ 1, 0 ൏ ,ுߞ ߞ ൏ 1	if 




൏
ߙ  2ሺ1 െ ݍሻߙ
2ሺ1 െ ݍሻߙ

.
ሺ56ሻ

We assume that the exogenous parameters are chosen so that there exists a set of parameters satisfying 

Eqs. (54) and (55) or Eq. (56) for a pooling equilibrium.  

PROPOSITION 1: When all informed traders are directional informed ( ߜ ൌ 0 ), in a pooling 

equilibrium, ൣܧ ሚܵห݊݅ݐ	݁݀ܽݎݐ൧ ൏ ൣܧ ሚܵห݇ܿݐݏ	݁݀ܽݎݐ൧  and ܲ െ ܥ  ܲ∗ െ ∗ܥ , where ܲ  and ܥ  are 

the midpoints of the bid and ask quotes for the put and call options, respectively . 
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Proof. In the case where δ ൌ 0, the parameters ߞு and ߞ are rendered meaningless and Eqs. (42) - (51) 

characterize the equilibrium. We first compute ߟுௌ, ,ுߟ ,ௌߟ  and ߟ  to satisfy Eqs. (48) - (51) 

simultaneously: 

ுௌߟ ൌ
ߛߙ െ 2ሺ1 െ |ሺ|∆ߠሼݍሻߙ  |∆|ሻ െ ሽߛ2

ߛሼߙ  |ሺ|∆ߠ  |∆|ሻሽ
,

ሺ57ሻ

ுߟ ൌ
ሺ1ߙ െ |ுௌሻ|∆ߟ  2ሺ1 െ |ሺ|∆ݍሻߙ െ |∆|ሻ

|ሺ|∆ߙ  |∆|ሻ
,

ሺ58ሻ

ௌߟ ൌ
ሺ1ߛߙ െ ሻߩ െ 2ሺ1 െ |ሺ|∆ߠሼݍሻߙ  |∆|ሻ െ ሺ1ߛ2 െ ሻሽߩ

ሺ1ߛሼߙ െ ሻߩ  |ሺ|∆ߠ  |∆|ሻሽ
,

ሺ59ሻ

ߟ ൌ
ሺ1ߙ െ |ௌሻ|∆ߟ  2ሺ1 െ |ሺ|∆ݍሻߙ െ |∆|ሻ

|ሺ|∆ߙ  |∆|ሻ
.

ሺ60ሻ

We then calculate the expected stock values conditional on the stock and option trades. The 

calculation of these conditional expectations follows from a standard application of Bayes’ Rule, and 

results in the following expressions:  

EൣS෨หstock	trade൧ ൌ S∗ 
ܵு െ ܵ

2
ுௌߟሺߙ െ ௌሻߟ

4ሺ1 െ ݍሻߙ  ுௌߟሺߙ  ௌሻߟ
,

ሺ61ሻ

EൣS෨หoption	trade൧ ൌ S∗ െ
ܵு െ ܵ

2
ுௌߟሺߙ െ ௌሻߟ

8ሺ1 െ ݍሻߙ  ߙ2 െ ுௌߟሺߙ  ௌሻߟ
.

ሺ62ሻ

Substituting Eqs. (57) and (59) into Eqs. (61) and (62), we obtain: 

  EൣS෨หstock	trade൧ െ EൣS෨หoption	trade൧	

ൌ
ܵு െ ܵ

2
∙

ߩ
ሼߙ  6ሺ1 െ ሽݍሻߙ

∙
ሼߠሺ|∆|  |∆|ሻ  |ሺ|∆ߠሽሼߛ  |∆|ሻ  ሺ1ߛ െ ሻሽߩ

ቄߠሺ|∆|  |∆|ሻ  ߛ ቀ1 െ
ߩ
2ቁቅ ሼߠሺ|∆|  |∆|ሻρ  2ሺ1 െ |ሺ|∆ߠሻሺߩ  |∆|ሻ  ሻሽߛ

,
ሺ63ሻ

which is greater than zero when ρ  0.  

The put and call option prices, calculated as the midpoints of the equilibrium bid and ask quotes, 

are as follows:  
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ܲ ൌ
ܽ  ܾ

2
ൌ ܲ∗ 

ሺܵு െ ܵሻ|Δ|

4
ቊെ

2ሺ1 െ ݍሻߙ
ሺ1ߙ െ ௌߟ െ ሻߟ  2ሺ1 െ ݍሻߙ


2ሺ1 െ ݍሻߙ

ሺ1ߙ െ ுௌߟ െ ுሻߟ  2ሺ1 െ ݍሻߙ
ቋ,

ሺ64ሻ

ܥ ൌ
ܽ  ܾ

2
ൌ ∗ܥ 

ሺܵு െ ܵሻΔ
4

ቊെ
2ሺ1 െ ݍሻߙ

ுߟߙ  2ሺ1 െ ݍሻߙ


2ሺ1 െ ሻqߙ
ߟߙ  2ሺ1 െ ሻqߙ

ቋ.	
ሺ65ሻ

Substituting Eqs. (57) - (60) into Eqs. (64) and (65) yields: 

ܲ െ ܥ ൌ ܲ∗ െ ∗ܥ  ሺܵு െ ܵሻ
ሺ1ߩߛ െ ݍሻߙ

ߙሼߠ  6ሺ1 െ ሽݍሻߙ
,

ሺ66ሻ

which is greater than ܲ∗ െ when ρ ∗ܥ  0. This says that the difference in prices between the OTM 

put and ATM call is larger than the difference between their unconditional expected values. ∎ 

PROPOSITION 2: When all informed traders are volatility informed (ߜ ൌ 1), in a pooling equilibrium, 

ൣܧ ሚܵห݊݅ݐ	݁݀ܽݎݐ൧ ൌ ൣܧ ሚܵห݇ܿݐݏ	݁݀ܽݎݐ൧ and ܲ െ ܥ ൌ ܲ∗ െ  .∗ܥ

 

Proof. In the case where δ ൌ 1, the parameters ߟுௌ, ,ுߟ ߟ ௌ, andߟ  are rendered meaningless and 

Eqs. (42) - (47), (52), and (53) characterize the equilibrium. We first compute ߞு and ߞ to satisfy Eqs. 

(52) and (53) simultaneously: 

ுߞ ൌ ߞ ൌ
ߙ  2ሺ1 െ ሺݍሻߙ െ ሻ

ሺߙ  ሻ
.

ሺ67ሻ

As in the proof of Proposition 1, we next calculate the conditional expected values of the stock. The 

calculation shows that the expected stock values conditional on the stock and option trades have the 

same value, namely, ൣܧ ሚܵห݊݅ݐ	݁݀ܽݎݐ൧ ൌ ൣܧ ሚܵห݇ܿݐݏ	݁݀ܽݎݐ൧ ൌ ܵ∗ . This is expected since the 

difference in mean equity values conditional on the trading venues is caused by the short-sale cost in 

the stock market, which is only relevant when informed traders use equity.  

The put and call option prices are calculated as follows: 

ܲ ൌ ܲ∗ 
ሺߪு െ ሻߪ

4
ቊെ

2ሺ1 െ ݍሻߙ
ሺ1ߙ െ ுሻߞ  2ሺ1 െ ݍሻߙ


2ሺ1 െ ݍሻߙ

ሺ1ߙ െ ሻߞ  2ሺ1 െ ݍሻߙ
ቋ,	 ሺ68ሻ
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ܥ ൌ ∗ܥ 
ሺߪு െ ሻߪ

4
ቊെ

2ሺ1 െ ݍሻߙ
ுߞߙ  2ሺ1 െ ݍሻߙ


2ሺ1 െ ݍሻߙ

ߞߙ  2ሺ1 െ ݍሻߙ
ቋ.

ሺ69ሻ

Substituting Eq. (67) into Eqs. (68) and (69) yields: 

ܲ െ ܥ ൌ ܲ∗ െ .∗ܥ
ሺ70ሻ

This says that the difference in prices between the OTM put and ATM call is the same as the 

difference between their unconditional expected values. ∎ 
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Table 1. Descriptive statistics 

Panel A reports sample size information and descriptive statistics for ܱ/ ܵ,௪ and ܵܧܭ ܹ,௪ for each year of the sample, as well as for the full 

sample. FIRMS represents the number of unique firms contained in the sample per year. ܱ/ ܵ,௪ represents the ratio of option volume to stock 

volume of firm ݅ in week ܧܭܵ .ݓ ܹ,௪ represents the difference between the implied volatilities of an OTM put and an ATM call. We first 

compute the cross-sectional mean and quartiles of O/S and SKEW for each week, and then report the time series average of these weekly 

summary statistics. CORR is the time series average of the cross-sectional correlations between O/S and SKEW. Panel B reports the average 

firm characteristics for portfolios formed on the basis of SKEW and O/S. At the end of each week we sort all available stocks into terciles 

(S1 to S3) based on SKEW. The extreme terciles contain 30% of the sample, while the middle tercile contains 40% of the sample. Stocks in 

S1 have the lowest SKEW, while stocks in S3 have the highest SKEW. We then independently sort these same stocks into deciles (V1 to 

V10) based on O/S, with V10 representing the highest O/S portfolio. The reported values are the time series average of the cross-sectional 

mean characteristics. FIRMS is the average number of unique firms contained in each portfolio in each week. OPVOL represents the total 

option contract volume traded in a given week. VLC (VLP) represents the total call (put) contract volume traded in a given week. STVOL 

represents the total stock volume traded in a given week (in units of 100 shares). SIZE is the market capitalization (in billions of dollars). BM 

is the book to market ratio. SIZE and BM are measured at the end of June prior to week w. MOMENT represents cumulative stock return 

over the prior six months (percent). AMIHUD is the average of daily Amihud (2002) illiquidity ratios over the previous month (multiplied by 

107). The daily Amihud illiquidity is computed as the absolute return per dollar of daily trading volume. HVOL represents the historical 

volatility of stock returns measured over the previous month using daily stock returns (in percent).  

Panel A: Sample size and descriptive statistics of O/S and SKEW by year 

   O/S(%) SKEW(%)  CORR 
(%) Year FIRMS Firm-weeks MEAN P25 MEDIAN P75 MEAN P25 MEDIAN P75  

1996 1,057 9,669 7.150 2.312 4.470 8.727 5.332 1.411 4.166 8.101  5.302 

1997 1,633 31,120 6.856 2.163 4.265 8.349 5.561 1.294 4.243 8.298  2.845 

1998 1,828 34,061 6.049 1.919 3.823 7.388 6.106 1.580 4.658 8.959  4.739 

1999 1,853 37,034 5.796 1.867 3.793 7.493 4.928 1.061 3.621 7.170  1.896 

2000 1,840 41,887 5.431 1.890 3.743 6.933 4.429 0.720 3.277 6.772  0.409 

2001 1,607 36,836 4.641 1.507 3.048 5.812 6.659 3.244 5.708 8.967  8.515 

2002 1,524 33,469 4.592 1.364 2.941 5.840 8.576 5.009 7.515 10.805  4.366 

2003 1,467 33,169 5.890 1.566 3.533 7.324 7.545 4.471 6.380 9.203  -0.691 

2004 1,598 36,912 6.991 1.854 4.232 8.833 5.856 3.349 4.901 7.186  1.821 

2005 1,619 38,734 7.990 1.977 4.548 9.768 5.828 3.042 4.631 6.920  4.100 

2006 1,711 45,743 8.813 2.293 5.325 11.264 5.296 2.801 4.365 6.573  1.543 

2007 1,848 50,778 8.706 2.110 4.995 10.689 5.504 2.734 4.527 6.971  6.244 

2008 1,818 51,954 6.978 1.565 3.780 8.415 7.991 4.070 6.528 10.121  5.914 

2009 1,683 47,325 7.489 1.827 4.270 9.045 7.890 4.767 6.918 9.836  -7.163 

2010 1,718 48,325 7.790 1.766 4.177 9.123 6.023 3.664 5.229 7.323  -2.322 

2011 1,703 50,512 8.229 1.701 4.290 9.829 6.154 3.520 5.101 7.200  1.095 

2012 1,580 44,681 8.556 1.747 4.362 10.021  5.954 3.440 4.949 6.971   -4.682 

All   672,209 6.932 1.832 4.081 8.516  6.246 3.008 5.135 8.080   1.861 
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Panel B: Sample size and firm characteristics by 30 portfolios (3-by-10) based on SKEW and O/S  

 
All 

V1 
(Low) 

V4 V7 
V10 

(High)  
All V1 V4 V7 V10 

 FIRMS  O/S(%) 
All 814 81 81 82 81  6.93 0.57 2.60 6.30 27.58 

S1 (Flat) 245 23 24 25 26  7.27 0.57 2.60 6.31 27.60 
S2 326 30 32 34 31  6.79 0.57 2.60 6.30 26.09 

S3 (Steep) 244 28 25 22 24  6.77 0.57 2.60 6.29 29.15 
 SKEW(%)  OPVOL 

All 6.25 6.67 6.20 5.99 6.63  10,872 377 2,494 10,921 41,997 
S1 1.06 0.98 0.99 1.12 1.09  13,619 409 2,844 12,412 49,192 
S2 5.22 5.24 5.22 5.21 5.19  11,562 384 2,588 11,769 44,187 
S3 12.82 13.41 12.52 12.40 14.17  7,195 358 2,100 7,493 27,153 

 VLC  VLP 
All 6,552 235 1,567 6,702 25,051  4,320 142 927 4,220 16,946 
S1 8,503 257 1,842 7,853 30,678  5,117 152 1,002 4,559 18,514 
S2 6,918 239 1,600 7,126 26,213  4,644 145 987 4,643 17,974 
S3 4,107 223 1,305 4,487 14,985  3,088 135 795 3,006 12,168 

 STVOL  SIZE (billions of dollars) 
All 129,608 73,171 97,428 171,177 157,659  11.92 5.57 7.60 15.17 19.59 
S1 144,588 77,595 107,998 189,110 168,285  11.99 5.70 7.66 15.65 17.86 
S2 139,981 74,391 100,801 184,116 178,117  15.57 6.61 9.78 18.96 26.56 
S3 100,723 70,877 85,427 124,413 105,946  6.97 4.30 4.86 8.45 10.16 

 BM  MOMENT (%) 
All 0.46 0.53 0.47 0.44 0.41  13.36 8.54 12.16 13.57 19.84 
S1 0.45 0.52 0.47 0.44 0.41  14.49 7.93 13.06 14.96 22.40 
S2 0.45 0.52 0.46 0.43 0.40  14.09 8.38 12.31 14.52 21.00 
S3 0.49 0.55 0.49 0.46 0.44  11.26 9.14 10.83 11.16 15.66 

 AMIHUD (x107)  HVOL(%) 
All 0.022 0.017 0.023 0.022 0.024  56.12 48.81 55.95 58.00 59.30 
S1 0.021 0.016 0.023 0.022 0.024  55.23 48.01 54.76 57.12 58.16 
S2 0.014 0.013 0.017 0.015 0.013  52.55 45.59 52.25 54.67 55.47 
S3 0.032 0.022 0.032 0.034 0.041  61.77 53.17 61.77 64.25 65.68 
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Table 2. Returns and factor loadings for portfolios based on volatility smirk and options volume 

Panel A presents the excess returns and estimated results of the factor models for various SKEW and O/S portfolios. SKEW represents the 

difference between the implied volatilities of an OTM put and an ATM call. O/S represents the ratio of option volume to stock volume. 

Portfolios are formed based on an independent sort by the three SKEW and ten O/S groups, as in Panel B of Table 1. The SKEW and O/S 

portfolios numbered “one” have the lowest SKEW and O/S, respectively. To compute portfolio returns, we skip one trading day after 

portfolio formation, and compute the equally-weighted return of all firms in each portfolio over the following five trading days. Subpanel A.1 

reports the average weekly excess return over the risk-free rate and intercepts from the time-series factor regression of the weekly excess 

return on three sets of contemporaneous risk factors: excess market return (MKTRF); three Fama-French factors (MKTRF, SMB, and HML); 

and the three Fama-French and momentum factors (UMD). Subpanel A.2 reports the factor loadings in the four-factor model. Panel B reports 

the analogous results for ∆O/S replacing O/S, where ∆O/S equals the deviation of O/S from its historical average over the previous six 

months. All returns are shown as percentages and t-statistics are in parentheses (bold if significant at the 5% level).  

Panel A: 3×10 Portfolios independently sorted on SKEW and O/S 

Subpanel A.1: Portfolio returns 

 
All 

V1 
(Low) 

V4 V7 
V10 

(High) 
V1-V10 

 
All V1 V4 V7 V10 V1-V10 

Excess return (%) CAPM alpha (%) 

All 0.104 0.149 0.138 0.117 0.024 0.125  -0.004 0.054 0.032 0.005 -0.086 0.140 

(0.85) (1.37) (1.12) (0.90) (0.19) (1.87)  (-0.09) (1.40) (0.68) (0.10) (-1.52) (2.15) 

S1 (Flat) 0.174 0.188 0.294 0.217 0.120 0.068  0.069 0.094 0.189 0.108 0.015 0.079 

(1.43) (1.68) (2.23) (1.58) (0.87) (0.75)  (1.46) (1.94) (2.74) (1.48) (0.19) (0.88) 

S2 0.122 0.126 0.117 0.123 0.143 -0.016  0.018 0.034 0.014 0.013 0.033 0.001 

(1.05) (1.17) (0.97) (0.95) (1.08) (-0.21)  (0.51) (0.77) (0.28) (0.24) (0.54) (0.01) 

S3 (Steep) 0.008 0.134 0.006 -0.005 -0.238 0.371  -0.106 0.035 -0.105 -0.123 -0.350 0.386 

(0.06) (1.12) (0.04) (-0.03) (-1.64) (4.10)  (-2.15) (0.62) (-1.51) (-1.56) (-4.33) (4.31) 

S1-S3 0.167 0.055 0.288 0.222 0.358   0.174 0.058 0.294 0.231 0.365  

(3.91) (0.92) (3.67) (2.60) (4.03)    (4.16) (0.97) (3.75) (2.71) (4.11)   

Three-factor alpha (%) Four-factor alpha (%) 

All -0.037 0.023 -0.004 -0.019 -0.117 0.140  -0.033 0.029 0.002 -0.013 -0.120 0.149 

(-1.49) (0.68) (-0.12) (-0.48) (-2.78) (2.66)  (-1.36) (0.88) (0.06) (-0.33) (-2.85) (2.90) 

S1 0.040 0.070 0.159 0.092 -0.023 0.093  0.040 0.076 0.162 0.092 -0.032 0.108 

(1.21) (1.50) (2.63) (1.49) (-0.36) (1.16)  (1.22) (1.65) (2.69) (1.49) (-0.49) (1.37) 

S2 -0.005 0.009 -0.013 -0.007 0.016 -0.007  -0.003 0.013 -0.007 -0.002 0.011 0.002 

(-0.20) (0.21) (-0.28) (-0.15) (0.31) (-0.11)  (-0.14) (0.31) (-0.17) (-0.04) (0.22) (0.03) 

S3 -0.156 -0.006 -0.160 -0.166 -0.400 0.395  -0.145 0.003 -0.149 -0.151 -0.394 0.397 

(-4.38) (-0.11) (-2.68) (-2.39) (-5.72) (4.87)  (-4.43) (0.06) (-2.57) (-2.26) (-5.66) (4.90) 

S1-S3 0.195 0.076 0.319 0.258 0.377   0.185 0.073 0.311 0.243 0.362  

(5.00) (1.29) (4.14) (3.09) (4.27)    (5.03) (1.24) (4.07) (2.99) (4.20)   

Subpanel A.2: Factor loadings in the four-factor model 
MKTRF beta SMB beta 

All 1.181 1.063 1.159 1.217 1.234 -0.171  0.529 0.265 0.551 0.513 0.586 -0.322 

(120.93) (78.88) (80.48) (77.18) (72.75) (-8.21)  (32.61) (11.82) (23.05) (19.60) (20.81) (-9.31) 

S1 1.172 1.059 1.156 1.216 1.210 -0.151  0.540 0.238 0.546 0.479 0.685 -0.447 

(88.68) (56.90) (47.44) (48.70) (46.28) (-4.74)  (24.61) (7.70) (13.47) (11.54) (15.78) (-8.46) 

S2 1.163 1.039 1.137 1.204 1.246 -0.206  0.418 0.204 0.423 0.434 0.432 -0.228 

(117.87) (61.92) (64.45) (65.76) (60.54) (-7.81)  (25.47) (7.33) (14.43) (14.25) (12.64) (-5.18) 

S3 1.214 1.089 1.191 1.238 1.216 -0.127  0.667 0.342 0.715 0.691 0.753 -0.411 

(91.73) (53.19) (50.80) (45.84) (43.24) (-3.88)  (30.33) (10.06) (18.37) (15.41) (16.11) (-7.54) 

S1-S3 -0.042 -0.030 -0.034 -0.022 -0.006   -0.126 -0.104 -0.170 -0.212 -0.068  

(-2.80) (-1.25) (-1.11) (-0.65) (-0.18)    (-5.12) (-2.63) (-3.31) (-3.89) (-1.17)   

HML beta UMD beta 

All -0.138 0.250 -0.109 -0.319 -0.257 0.507  -0.062 -0.097 -0.100 -0.099 0.040 -0.137 

(-8.36) (10.98) (-4.47) (-11.98) (-8.97) (14.43)  (-6.06) (-6.90) (-6.67) (-6.07) (2.29) (-6.34) 

S1 -0.233 0.128 -0.228 -0.442 -0.247 0.376  -0.007 -0.093 -0.053 0.004 0.134 -0.227 

(-10.42) (4.08) (-5.52) (-10.48) (-5.60) (6.99)  (-0.48) (-4.80) (-2.08) (0.14) (4.94) (-6.87) 

S2 -0.173 0.236 -0.111 -0.290 -0.317 0.553  -0.024 -0.066 -0.079 -0.078 0.075 -0.142 

(-10.38) (8.32) (-3.73) (-9.38) (-9.11) (12.38)  (-2.35) (-3.80) (-4.30) (-4.08) (3.53) (-5.16) 

S3 0.004 0.351 0.029 -0.214 -0.128 0.479  -0.167 -0.136 -0.175 -0.231 -0.098 -0.037 

(0.18) (10.14) (0.74) (-4.69) (-2.70) (8.64)  (-12.12) (-6.38) (-7.19) (-8.23) (-3.36) (-1.10) 

S1-S3 -0.237 -0.222 -0.257 -0.228 -0.119   0.160 0.043 0.123 0.234 0.232  

(-9.42) (-5.55) (-4.93) (-4.11) (-2.02)    (10.36) (1.74) (3.82) (6.87) (6.41)  
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Panel B: 3×10 Portfolios independently sorted on SKEW and ∆O/S 

Subpanel B.1: Portfolio alphas 

 
All 

V1 
(Low) 

V4 V7 
V10 

(High) 
V1-V10 

 
All V1 V4 V7 V10 V1-V10 

Excess return (%) CAPM alpha (%) 

All 0.104 0.176 0.160 0.081 0.041 0.136  -0.004 0.060 0.050 -0.022 -0.063 0.123 

(0.85) (1.29) (1.27) (0.68) (0.33) (2.41)  (-0.09) (1.08) (1.12) (-0.50) (-1.14) (2.25) 

S1 (Flat) 0.174 0.273 0.319 0.157 0.179 0.094  0.069 0.159 0.211 0.058 0.078 0.080 

(1.43) (1.88) (2.42) (1.29) (1.37) (1.12)  (1.46) (2.01) (3.33) (0.98) (1.06) (0.97) 

S2 0.122 0.154 0.134 0.048 0.135 0.019  0.018 0.041 0.030 -0.055 0.034 0.007 

(1.05) (1.14) (1.11) (0.39) (1.08) (0.26)  (0.51) (0.68) (0.65) (-1.04) (0.53) (0.10) 

S3 (Steep) 0.008 0.077 0.033 0.043 -0.216 0.293  -0.106 -0.043 -0.085 -0.064 -0.325 0.283 

(0.06) (0.52) (0.23) (0.32) (-1.52) (3.23)  (-2.15) (-0.56) (-1.20) (-0.94) (-4.10) (3.14) 

S1-S3 0.167 0.196 0.286 0.114 0.394   0.174 0.201 0.296 0.122 0.403  

(3.91) (2.24) (3.60) (1.50) (4.55)   (4.16) (2.31) (3.76) (1.62) (4.68)  

Three-factor alpha (%) Four-factor alpha (%) 

All -0.037 0.029 0.024 -0.056 -0.104 0.133  -0.033 0.041 0.032 -0.058 -0.109 0.150 

(-1.49) (0.66) (0.63) (-1.68) (-2.54) (2.44)  (-1.36) (1.00) (0.89) (-1.72) (-2.69) (3.00) 

S1 0.040 0.125 0.192 0.034 0.038 0.086  0.040 0.130 0.199 0.031 0.029 0.101 

(1.21) (1.86) (3.40) (0.64) (0.61) (1.04)  (1.22) (1.95) (3.57) (0.59) (0.47) (1.25) 

S2 -0.005 0.022 0.013 -0.083 0.004 0.019  -0.003 0.033 0.018 -0.086 -0.005 0.038 

(-0.20) (0.42) (0.30) (-1.82) (0.07) (0.25)  (-0.14) (0.66) (0.43) (-1.90) (-0.09) (0.56) 

S3 -0.156 -0.086 -0.133 -0.118 -0.384 0.298  -0.145 -0.068 -0.118 -0.115 -0.380 0.312 

(-4.38) (-1.25) (-2.08) (-1.98) (-5.63) (3.31)  (-4.43) (-1.05) (-1.94) (-1.93) (-5.59) (3.54) 

S1-S3 0.195 0.210 0.324 0.151 0.422   0.185 0.198 0.317 0.146 0.409  

(5.00) (2.44) (4.24) (2.05) (4.93)   (5.03) (2.33) (4.17) (1.99) (4.87)  

Subpanel B.2: Factor loadings in the four-factor model 
MKTRF beta SMB beta 

All 1.181 1.236 1.184 1.161 1.177 0.059  0.529 0.573 0.449 0.506 0.638 -0.066 

(120.93) (74.27) (81.60) (85.54) (71.63) (2.90)  (32.61) (20.71) (18.63) (22.44) (23.36) (-1.95) 

S1 1.172 1.237 1.173 1.123 1.160 0.078  0.540 0.658 0.427 0.433 0.651 0.007 

(88.68) (45.85) (52.05) (52.56) (46.49) (2.38)  (24.61) (14.68) (11.40) (12.21) (15.71) (0.13) 

S2 1.163 1.204 1.145 1.164 1.172 0.032  0.418 0.451 0.322 0.451 0.516 -0.065 

(117.87) (59.02) (66.91) (63.46) (53.73) (1.14)  (25.47) (13.30) (11.32) (14.80) (14.23) (-1.41) 

S3 1.214 1.249 1.253 1.194 1.200 0.049  0.667 0.651 0.631 0.658 0.783 -0.132 

(91.73) (47.73) (50.88) (49.76) (43.67) (1.36)  (30.33) (14.98) (15.41) (16.50) (17.15) (-2.23) 

S1-S3 -0.042 -0.012 -0.080 -0.071 -0.041   -0.126 0.007 -0.203 -0.224 -0.132  
(-2.80) (-0.34) (-2.60) (-2.41) (-1.20)   (-5.12) (0.12) (-3.98) (-4.55) (-2.34)  

HML beta  UMD beta 

All -0.138 -0.280 -0.162 -0.049 -0.098 -0.182  -0.062 -0.188 -0.132 0.019 0.076 -0.265 

(-8.36) (-9.94) (-6.60) (-2.13) (-3.52) (-5.32)  (-6.06) (-10.90) (-8.77) (1.38) (4.46) (-12.60) 

S1 -0.233 -0.337 -0.304 -0.154 -0.139 -0.198  -0.007 -0.086 -0.108 0.039 0.144 -0.229 

(-10.42) (-7.39) (-7.99) (-4.27) (-3.31) (-3.58)  (-0.48) (-3.05) (-4.61) (1.77) (5.55) (-6.77) 

S2 -0.173 -0.351 -0.151 -0.096 -0.143 -0.207  -0.024 -0.172 -0.082 0.050 0.136 -0.308 

(-10.38) (-10.17) (-5.20) (-3.08) (-3.88) (-4.42)  (-2.35) (-8.13) (-4.64) (2.62) (5.99) (-10.67) 

S3 0.004 -0.154 -0.001 0.122 0.026 -0.180  -0.167 -0.280 -0.226 -0.044 -0.055 -0.224 

(0.18) (-3.48) (-0.03) (3.00) (0.56) (-2.99)  (-12.12) (-10.29) (-8.84) (-1.77) (-1.94) (-6.06) 

S1-S3 -0.237 -0.183 -0.303 -0.276 -0.166   0.160 0.194 0.118 0.083 0.199  

(-9.42) (-3.16) (-5.84) (-5.49) (-2.89)   (10.36) (5.45) (3.71) (2.71) (5.65)  
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Table 3. Fama-MacBeth regressions  

Panel A presents the results from a series of Fama-MacBeth regressions. Each week w, we run the variants of the following cross-sectional 

regressions of the firm’s stock return: 

ܧܴ ܶ,௪ ൌ ܽ௪  ܾ௪ܵܧܭ ܹ,௪ିଵ  ܿ௪ܼ,௪ିଵ  ݀௪൫ܼ,௪ିଵ ൈ ܧܭܵ ܹ,௪ିଵ൯  ݁௪ᇱ Θ,௪ିଵ  ߳,௪. 

ܧܴ ܶ,௪ is the stock i’s return measured over a week w after skipping a trading day following the observation of ܵܧܭ ܹ,௪ିଵ and ܱ/ ܵ,௪ିଵ. 

ܧܭܵ ܹ,௪ିଵ is volatility skew observed for options on stock i at week ݓ െ 1 and ܱ/ ܵ,௪ିଵ is the option to stock volume ratio. ܼ,௪ିଵ is an 

O/S-based variable, taking on deciles of ܱ/ ܵ,௪ିଵ, ܱ/ ܵ,௪ିଵitself, or the logarithm of ܱ/ ܵ,௪ିଵ. Decile portfolios on the basis of ܱ/ ܵ,௪ିଵ are 

formed at the end of week ݓ െ 1, with the highest values located in the 10th decile. Θ,௪ିଵ is a vector of the following control variables: 

AMIHUD is the average of daily Amihud (2002) illiquidity ratios over the previous month (multiplied by 107); BM represents the firm’s 

book to market ratio; Ln(SIZE) is the log of the firm’s market capitalization in millions of dollars; ܴܧ ௪ܶିଵ is the firm’s stock return in the 

portfolio formation week; MOMENT represents cumulative stock return over the prior six months; HVOL is the historical volatility of stock 

returns measured over the previous month using daily stock returns. Panel B repeats this analysis using ∆O/S instead of O/S, where ∆O/S 

represents the deviation of O/S from its historical average over the prior six months. ܼ,௪ିଵ takes on deciles of ∆ܱ/ ܵ,௪ିଵ or ∆ܱ/ ܵ,௪ିଵitself 

in Panel B. Standard errors are computed across weekly coefficient estimates, following Fama and MacBeth (1973). The resulting t-statistics 

are shown in parentheses. The notations ***, **, and * indicate that the coefficient is significant at the 1%, 5%, and 10% level, respectively. All 

returns are shown as percentages. The last row provides the average adjusted R2 from the weekly regressions.  

Panel A: Using O/S to measure options volume  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Intercept 0.454** 0.356* 0.459** 0.406** 0.343* 0.448** 0.444** 0.343* 0.448** 0.427** 

(2.25) (1.79) (2.30) (2.04) (1.71) (2.22) (2.22) (1.71) (2.23) (2.14) 

SKEW -1.309***  -1.306*** -0.283  -1.289*** -0.980***  -1.302*** -0.690*** 

(-5.57)  (-5.58) (-0.83)  (-5.47) (-3.91)  (-5.54) (-2.59) 

Decile (O/S)  -0.011** -0.010* 0.003       

 (-1.99) (-1.82) (0.42)       

Decile (O/S) × SKEW    -0.195***       

    (-3.26)       

O/S     -0.393** -0.324* 0.021    

     (-2.00) (-1.65) (0.08)    

O/S × SKEW       -4.875**    

       (-2.15)    

Ln (O/S)        -0.031** -0.029* 0.007 

       (-1.97) (-1.80) (0.36) 

Ln (O/S) × SKEW          -0.504*** 

         (-3.36) 

AMIHUD -0.270 -0.640 -0.228 -0.215 -0.648 -0.240 -0.223 -0.630 -0.218 -0.210 

(-0.54) (-1.30) (-0.45) (-0.42) (-1.33) (-0.48) (-0.44) (-1.28) (-0.43) (-0.41) 

BM 0.008 -0.005 0.000 0.001 -0.003 0.002 0.001 -0.005 0.000 0.001 

(0.13) (-0.07) (0.01) (0.02) (-0.04) (0.04) (0.02) (-0.08) (0.00) (0.01) 

Ln(SIZE) -0.020 -0.011 -0.015 -0.017 -0.013 -0.017 -0.019 -0.011 -0.016 -0.018 

(-1.10) (-0.56) (-0.81) (-0.90) (-0.69) (-0.94) (-1.02) (-0.59) (-0.83) (-0.94) 

WRETt-1 -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** 

(-4.91) (-4.80) (-4.86) (-4.94) (-4.82) (-4.88) (-4.93) (-4.81) (-4.88) (-4.96) 

MOMENT 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 

(0.41) (0.57) (0.44) (0.42) (0.59) (0.46) (0.47) (0.57) (0.44) (0.43) 

HVOL -0.156 -0.138 -0.132 -0.137 -0.147 -0.142 -0.149 -0.138 -0.132 -0.140 

(-1.22) (-1.11) (-1.06) (-1.10) (-1.15) (-1.11) (-1.17) (-1.10) (-1.06) (-1.12) 

Adj-R2(%) 7.613 7.614 7.812 7.939 7.615 7.813 8.018 7.612 7.811 7.935 
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Panel B: Using ∆O/S as option volume measure 

  (1) (2) (3) (4) (5) (6) (7) 

Intercept 0.454** 0.396* 0.500** 0.443** 0.361* 0.465** 0.471** 

(2.25) (1.90) (2.39) (2.11) (1.79) (2.30) (2.33) 

SKEW -1.309***  -1.318*** -0.570 -1.307*** -1.270*** 

(-5.57)  (-5.62) (-1.27) (-5.55) (-5.33) 

Decile (∆O/S) -0.008** -0.007* 0.003 

(-1.98) (-1.89) (0.63) 

Decile(∆O/S) × SKEW   -0.136** 

  (-2.10) 

∆O/S     -0.552*** -0.512*** 0.123 

     (-2.93) (-2.76) (0.42) 

∆O/S × SKEW       -7.633** 

       (-2.33) 

AMIHUD -0.270 -0.637 -0.227 -0.243 -0.624 -0.219 -0.223 

(-0.54) (-1.30) (-0.45) (-0.48) (-1.28) (-0.44) (-0.44) 

BM 0.008 0.003 0.008 0.005 0.003 0.007 0.004 

(0.13) (0.05) (0.12) (0.08) (0.04) (0.11) (0.06) 

Ln(SIZE) -0.020 -0.017 -0.021 -0.021 -0.017 -0.021 -0.022 

(-1.10) (-0.90) (-1.13) (-1.14) (-0.91) (-1.14) (-1.18) 

RETw-1 -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** -0.016*** 

(-4.91) (-4.82) (-4.88) (-4.89) (-4.84) (-4.90) (-4.91) 

MOMENT 0.000 0.001 0.001 0.001 0.001 0.001 0.001 

(0.41) (0.63) (0.50) (0.51) (0.62) (0.49) (0.49) 

HVOL -0.156 -0.167 -0.159 -0.161 -0.165 -0.158 -0.158 

(-1.22) (-1.31) (-1.25) (-1.26) (-1.29) (-1.23) (-1.24) 

Adj-R2(%) 7.613 7.470 7.669 7.823 7.524 7.724 7.956 
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Table 4. Fama-MacBeth regressions using dummy variables for volatility smirk groups 

Panel A presents the results from a series of Fama-MacBeth regressions using dummy variables for skew terciles. Each week w, we run the 

variants of the following cross-sectional regressions of the firm’s stock return: 

ܧܴ ܶ,௪ ൌ ܽ௪  ܾଵ௪ܹܵܧܭ	1st	݉ݑܦ,௪ିଵ  ܾଶ௪ܹܵܧܭ	3rd	݉ݑܦ,௪ିଵ  ܿ௪ܼ,௪ିଵ  ݀ଵ௪൫ܼ,௪ିଵ ൈ ,௪ିଵ൯݉ݑܦ	1st	ܹܧܭܵ

 ݀ଶ௪൫ܼ,௪ିଵ ൈ ,௪ିଵ൯݉ݑܦ	3rd	ܹܧܭܵ  ݁௪ᇱ Θ,௪ିଵ  ߳,௪	. 

ܧܴ ܶ,௪ is the stock i’s return measured over a week w as in Table 3. ܹܵܧܭ	1st	݉ݑܦ,௪ିଵ (ܹܵܧܭ	3rd	݉ݑܦ,௪ିଵ) is a dummy variable that 

takes the value of one if the stock i’s ܵܧܭ ܹ,௪ିଵ belongs to the bottom (top) 30% of all ranked values of ܵܧܭ ܹ,௪ିଵ and zero otherwise. 

ܧܭܵ ܹ,௪ିଵ is the difference between the implied volatilities of an OTM put and an ATM call on stock i at week ݓ െ 1. ܼ,௪ିଵ is an O/S-

based variable, taking on deciles of ܱ/ ܵ,௪ିଵ, ܱ/ ܵ,௪ିଵitself, or the logarithm of ܱ/ ܵ,௪ିଵ, where ܱ/ ܵ,௪ିଵ is the option to stock volume 

ratio. Decile portfolios of O/S are formed independently from the three SKEW groups as in Panel B of Table 1. Θ,௪ିଵ is a vector of the 

control variables which are defined in Table 3. Panel B repeats this analysis using ∆O/S instead of O/S, where ∆O/S represents the deviation 

of O/S from its historical average over the prior six months. ܼ,௪ିଵ takes on deciles of ∆ܱ/ ܵ,௪ିଵ or ∆ܱ/ ܵ,௪ିଵitself in Panel B. Standard 

errors are computed across weekly coefficient estimates, following Fama and MacBeth (1973). The resulting t-statistics are shown in 

parentheses. The notations ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. All returns are shown as percentages. 

The last row provides the average adjusted R2 from the weekly regressions.  

Panel A: Using O/S as option volume measure 

(1) (2) (3) (4) (5) (6) 
Intercept 0.186* 0.373* 0.179 0.397* 0.181* 0.383* 

(1.79) (1.87) (1.63) (1.96) (1.74) (1.91) 
SKEW 1st Dum 0.102*** 0.096*** 0.073** 0.071** 0.088*** 0.078*** 

(2.62) (2.60) (2.26) (2.54) (2.89) (2.89) 
SKEW 3rd Dum 0.047 0.058 -0.057 -0.041 -0.008 0.007 

(0.90) (1.29) (-1.44) (-1.45) (-0.19) (0.22) 
Decile (O/S) -0.002 0.001 

(-0.22) (0.12) 
Decile (O/S) × (SKEW 1st Dum) -0.009 -0.009 

(-1.21) (-1.30) 
Decile (O/S) × (SKEW 3rd Dum) -0.031*** -0.030*** 

(-3.48) (-3.33) 
O/S   -0.026 0.064   
   (-0.08) (0.22)   
O/S × (SKEW 1st Dum)    -0.348 -0.468   
   (-0.90) (-1.30)   
O/S × (SKEW 3rd Dum)    -0.848** -0.966**   
   (-2.20) (-2.56)   
Ln (O/S)   -0.004 0.004 

  (-0.17) (0.20) 
Ln (O/S)× (SKEW 1st Dum)   -0.025 -0.023 

  (-1.30) (-1.28) 
Ln (O/S)× (SKEW 3rd Dum)   -0.083*** -0.086*** 

  (-3.56) (-3.60) 
AMIHUD  -0.552 -0.564 -0.539 

 (-1.11) (-1.14) (-1.08) 
BM  -0.004 -0.004 -0.005 

 (-0.07) (-0.06) (-0.08) 
Ln(SIZE)  -0.019 -0.021 -0.020 

 (-1.00) (-1.11) (-1.04) 
RETw-1  -0.016*** -0.016*** -0.016*** 

 (-4.89) (-4.93) (-4.91) 
MOMENT  0.000 0.001 0.000 

 (0.46) (0.48) (0.46) 
HVOL  -0.136 -0.141 -0.136 

 (-1.10) (-1.12) (-1.10) 
Adj-R2(%) 0.814 7.795 0.832 7.891 0.809 7.786 
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Panel B: Using ∆O/S to measure options volume 

(1) (2) (3) (4) 
Intercept 0.173 0.404* 0.179 0.422** 

(1.40) (1.90) (1.57) (2.07) 
SKEW 1st Dum 0.086* 0.083** 0.054* 0.048** 

(1.83) (2.00) (1.87) (2.18) 
SKEW 3rd Dum 0.015 0.022 -0.104*** -0.094*** 

(0.29) (0.49) (-2.69) (-3.23) 
Decile (∆O/S) 0.000 0.002   
 (0.06) (0.33)   
Decile (∆O/S) × (SKEW 1st Dum) -0.006 -0.006   
 (-0.85) (-0.98)   
Decile (∆O/S) × (SKEW 3rd Dum) -0.024*** -0.023***   
 (-3.24) (-3.16)   
∆O/S   -0.042 0.160 
   (-0.14) (0.55) 
∆O/S × (SKEW 1st Dum)   -0.221 -0.437 
   (-0.49) (-1.09) 
∆O/S × (SKEW 3rd Dum)   -1.381*** -1.472*** 
   (-3.02) (-3.29) 
AMIHUD  -0.561 -0.546 

 (-1.13) (-1.10) 
BM  0.002 0.000 

 (0.03) (-0.00) 
Ln(SIZE)  -0.022 -0.023 

 (-1.20) (-1.25) 
RETw-1  -0.016*** -0.016*** 

 (-4.87) (-4.89) 
MOMENT  0.001 0.001 

 (0.54) (0.54) 
HVOL  -0.159 -0.157 

 (-1.25) (-1.23) 
 0.2119 0.2189 

Adj-R2(%) 0.688 7.651 0.774 7.813 
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Table 5. How long does the predictability last? 

Panel A presents the estimates from Fama-MacBeth regression. Each week w, we run the following cross-sectional regressions of the firm’s n-week-ahead weekly stock return: 

ܧܴ ܶ,௪ା ൌ ܽ௪  ܾ௪ܵܧܭ ܹ,௪  ܿ௪݈݁݅ܿ݁ܦሺܱ/ ܵ,௪ሻ  ݀௪൫݈݁݅ܿ݁ܦሺܱ/ ܵ,௪ሻ ൈ ܧܭܵ ܹ,௪൯  ݁௪ᇱ Θ,௪  ߳,௪ା, 

ܧܴ ܶ,௪ା is the stock i’s return measured over the nth week after the observation of ܵܧܭ ܹ,௪ and ܱ/ ܵ,௪, where n ranges from 1 to 12. ܵܧܭ ܹ,௪ is the difference between the implied volatilities of an OTM put and 

an ATM call on stock i observed at week ݓ and ܱ/ ܵ,௪ is the option to stock volume ratio. Decile portfolios based on O/S are formed at the end of each week, with the highest values located in the 10th decile. 

Θ,௪ିଵ is a vector of the control variables defined in Table 3. Panel B repeats this analysis using ∆O/S instead of O/S, where ∆O/S represents the deviation of O/S from its historical average over the prior six 

months. Coefficients on the control variables are estimated but not reported. Standard errors are computed across weekly coefficient estimates, following Fama and MacBeth (1973). The resulting t-statistics are 

shown in parentheses. The notations ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. All returns are shown as percentages. The last row provides the average adjusted R2 from the 

weekly regressions. 

Panel A: Using O/S to measure option volume  

 nth Week 
1 2 3 4 5 6 7 8 9 10 11 12 

Intercept 0.406** 0.467** 0.436** 0.352* 0.393* 0.395** 0.334 0.252 0.280 0.241 0.385* 0.177 
(2.04) (2.34) (2.22) (1.79) (1.89) (1.97) (1.62) (1.23) (1.48) (1.26) (1.93) (0.87) 

SKEW -0.283 0.114 0.076 0.112 -0.342 -0.326 0.048 -0.169 0.224 0.792** 0.243 0.326 
(-0.83) (0.37) (0.20) (0.32) (-1.04) (-0.97) (0.13) (-0.45) (0.63) (2.16) (0.66) (0.89) 

Decile (O/S) 0.003 -0.005 -0.006 0.000 -0.004 -0.006 -0.003 -0.006 -0.002 0.006 0.002 0.004 
(0.42) (-0.83) (-0.74) (0.03) (-0.57) (-0.82) (-0.41) (-0.86) (-0.30) (0.86) (0.26) (0.56) 

Decile (O/S) × SKEW -0.195*** -0.144** -0.150** -0.147** -0.085 -0.085 -0.112* -0.067 -0.150** -0.237*** -0.172*** -0.195*** 
(-3.26) (-2.58) (-2.23) (-2.24) (-1.40) (-1.37) (-1.77) (-1.10) (-2.36) (-3.75) (-2.67) (-3.11) 

Adj-R2 (%) 7.939 7.759 7.563 7.659 7.398 7.286 7.217 7.228 7.057 7.000 6.948 6.909 

Panel B: Using ∆O/S as option volume measure 

 nth Week 
1 2 3 4 5 6 7 8 9 10 11 12 

Intercept 0.443** 0.539*** 0.469** 0.408** 0.440** 0.450** 0.382* 0.290 0.348* 0.259 0.408* 0.170 
(2.11) (2.59) (2.25) (1.97) (2.06) (2.14) (1.76) (1.34) (1.73) (1.28) (1.94) (0.80) 

SKEW -0.570 -0.362 -0.332 -0.296 -0.615 -0.793 -0.278 -0.684 -0.583 0.483 0.188 -0.146 
(-1.27) (-0.89) (-0.67) (-0.69) (-1.37) (-1.65) (-0.56) (-1.27) (-1.20) (0.91) (0.39) (-0.30) 

Decile (∆O/S) 0.003 -0.006 -0.003 -0.005 -0.004 -0.007 -0.004 -0.004 -0.007 0.008 0.004 0.008 
(0.63) (-0.95) (-0.64) (-1.04) (-0.88) (-1.41) (-0.70) (-0.62) (-1.23) (1.37) (0.66) (1.30) 

Decile (∆O/S) × SKEW -0.136** -0.058 -0.056 -0.057 -0.035 0.001 -0.038 0.019 -0.003 -0.165** -0.138** -0.106 
(-2.10) (-0.91) (-0.82) (-0.96) (-0.53) (0.02) (-0.55) (0.25) (-0.04) (-2.40) (-2.06) (-1.58) 

Adj-R2 (%) 7.823 7.620 7.409 7.518 7.302 7.202 7.149 7.178 6.964 6.923 6.873 6.807 
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Table 6. Returns on portfolios formed on volatility smirk and option volume: Robustness Tests  

This table presents several robustness checks on our results with the portfolio approach. In Subpanel A.1, we repeat the analysis in Panel A 

of Table 2 for two sub-periods: the first spans 1996 to 2003, and the second covers 2004 to 2012. In Subpanel A.2, we repeat the analysis in 

Panel A of Table 2 using an independent sort by the five SKEW and five O/S groups. Panel B repeats this analysis using ∆O/S instead of 

O/S. The reported values are alphas from Fama-French’s (1993) three-factor model. All alphas are shown as percentages and t-statistics are 

in parentheses (bold if significant at the 5% level).  

Panel A: Using O/S to measure options volume 

Subpanel A.1: Subsample Results  

 
All 

V1 
(Low) 

V4 V7 
V10 

(High) 
V1-V10 All V1 V4 V7 V10 V1-V10 

 Sample period: 1996-2003  Sample period: 2004-2012 

All -0.078 -0.024 -0.036 -0.045 -0.131 0.107  -0.001 0.037 0.018 0.021 -0.096 0.133 

(-1.67) (-0.37) (-0.51) (-0.60) (-1.82) (1.17)  (-0.05) (1.33) (0.57) (0.61) (-2.02) (2.46) 

S1 (Flat) 0.000 0.034 0.232 0.133 -0.126 0.159  0.075 0.077 0.095 0.087 0.064 0.013 

(0.01) (0.40) (2.03) (1.16) (-1.11) (1.12)  (2.24) (1.63) (1.68) (1.54) (0.86) (0.15) 

S2 -0.037 -0.116 -0.103 -0.069 0.077 -0.193  0.026 0.076 0.052 0.065 -0.016 0.092 

(-0.80) (-1.55) (-1.21) (-0.81) (0.90) (-1.73)  (1.14) (1.96) (1.35) (1.56) (-0.27) (1.30) 

S3 (Steep) -0.211 0.007 -0.258 -0.217 -0.457 0.463  -0.114 -0.038 -0.081 -0.116 -0.350 0.312 

(-3.17) (0.07) (-2.30) (-1.74) (-3.82) (3.26)  (-3.49) (-0.84) (-1.39) (-1.64) (-4.32) (3.55) 

S1-S3 0.212 0.027 0.490 0.350 0.331   0.190 0.115 0.177 0.203 0.414  

(3.17) (0.26) (3.52) (2.32) (2.18)    (4.22) (1.79) (2.17) (2.31) (4.06)  

Subpanel A.2: 5×5 Portfolios on SKEW and O/S 

All V1 (Low) V2 V3 V4 V5 (High) V1-V5 

All -0.037 -0.004 0.017 -0.034 -0.060 -0.102 0.098 

(-1.49) (-0.15) (0.55) (-1.02) (-1.78) (-2.83) (2.23) 

S1 (Flat) 0.050 0.060 0.170 0.043 0.018 0.001 0.059 

(1.35) (1.35) (3.10) (0.74) (0.30) (0.02) (0.82) 

S2 0.033 0.000 0.084 0.013 0.053 0.026 -0.026 

(1.15) (-0.00) (1.90) (0.28) (1.10) (0.48) (-0.36) 

S3 -0.001 -0.010 -0.009 -0.001 0.004 -0.017 0.007 

 (-0.04) (-0.22) (-0.19) (-0.02) (0.10) (-0.34) (0.11) 

S4 -0.058 -0.014 0.020 -0.085 -0.102 -0.101 0.087 

 (-1.89) (-0.31) (0.41) (-1.73) (-1.92) (-1.81) (1.23) 

S5 (Steep) -0.207 -0.057 -0.161 -0.138 -0.291 -0.421 0.364 

(-5.03) (-1.09) (-2.86) (-2.25) (-4.19) (-6.29) (4.90) 

S1-S5 0.257 0.117 0.331 0.181 0.309 0.423  

(5.69) (1.93) (4.85) (2.49) (3.66) (4.82)  
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Panel B: Using ∆O/S to measure options volume 

Subpanel B.1: Subsample Results 

 
All 

V1 
(Low) 

V4 V7 
V10 

(High) 
V1-V10 All V1 V4 V7 V10 V1-V10 

 Sample period: 1996-2003  Sample period: 2004-2012 

All -0.078 0.039 -0.013 -0.140 -0.130 0.169  -0.001 0.032 0.054 0.011 -0.087 0.119 

(-1.67) (0.53) (-0.18) (-2.19) (-1.70) (1.70)  (-0.05) (0.66) (1.70) (0.36) (-2.13) (2.13) 

S1 (Flat) 0.000 0.081 0.203 -0.097 0.074 0.007  0.075 0.165 0.190 0.143 0.004 0.161 

(0.01) (0.67) (1.86) (-0.96) (0.65) (0.05)  (2.24) (2.42) (3.77) (2.90) (0.05) (1.90) 

S2 -0.037 0.039 -0.040 -0.213 0.015 0.024  0.026 0.023 0.055 0.030 -0.005 0.027 

(-0.80) (0.45) (-0.48) (-2.46) (0.15) (0.18)  (1.14) (0.36) (1.38) (0.71) (-0.09) (0.35) 

S3 (Steep) -0.211 -0.054 -0.192 -0.127 -0.507 0.454  -0.114 -0.106 -0.091 -0.122 -0.284 0.178 

(-3.17) (-0.44) (-1.58) (-1.11) (-4.09) (2.73)  (-3.49) (-1.43) (-1.58) (-2.28) (-4.00) (1.98) 

S1-S3 0.212 0.135 0.395 0.030 0.581   0.190 0.271 0.280 0.265 0.288  

(3.17) (0.86) (2.74) (0.22) (3.80)   (4.22) (2.97) (3.78) (3.81) (3.09)  

Subpanel B.2: 5×5 Portfolios on SKEW and ∆O/S 

All V1 (Low) V2 V3 V4 V5 (High) V1-V5 

All -0.037 -0.014 -0.010 -0.032 -0.036 -0.092 0.078 

(-1.49) (-0.36) (-0.29) (-1.11) (-1.18) (-2.77) (1.76) 

S1 (Flat) 0.050 0.081 0.105 0.023 0.030 0.010 0.071 

(1.35) (1.27) (1.77) (0.46) (0.58) (0.17) (0.94) 

S2 0.033 0.032 0.042 0.006 0.064 0.034 -0.002 

(1.15) (0.65) (0.91) (0.13) (1.37) (0.67) (-0.03) 

S3 -0.001 -0.022 0.030 -0.040 -0.002 0.024 -0.047 

(-0.04) (-0.44) (0.69) (-0.96) (-0.05) (0.49) (-0.67) 

S4 -0.058 -0.036 -0.079 -0.004 -0.057 -0.094 0.058 

 (-1.89) (-0.67) (-1.68) (-0.08) (-1.12) (-1.80) (0.84) 

S5 (Steep) -0.207 -0.130 -0.128 -0.168 -0.201 -0.395 0.265 

 (-5.03) (-1.97) (-2.02) (-3.00) (-3.47) (-6.64) (3.51) 

S1-S5 0.257 0.211 0.232 0.192 0.231 0.405  

(5.69) (2.69) (3.10) (2.74) (3.31) (5.16)  
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Table 7. Earnings Surprises  

This table contains a series of Fama-MacBeth regressions, where we regress the upcoming earnings surprise on SKEW, deciles of O/S, and their interaction term, separately and together. SKEW is the difference 

between the implied volatilities of an OTM put and an ATM call. O/S is the ratio of options volume to stock volume. Other explanatory variables considered in Tables 3 through 5 are also included in the estimation. 

We use four measures to capture the news released at earnings announcements: 

  SURPRISE1 ൌ
ாௌିாௌ

షభ
, SURPRISE2 ൌ

ாௌିாௌ

ௌ்ሼாௌೖିாௌೖሽೖసషభ
షఴ , SUE1 ൌ

ாௌିாௌషర
షభ

,  SUE2 ൌ
ாௌିாௌషర

ௌ்ሼாௌೖିாௌೖషరሽೖసషభ
షఴ  

where ܵܲܧ௧ is the firm’s actual earnings per share (EPS) for quarter t, ܵܲܧ௧  the analyst consensus forecast on EPS for quarter t, ܵܲܧ௧ିସ EPS for the same quarter of the previous fiscal year, ௧ܲିଵ the beginning-of-

quarter stock price, ܵܶܦሼݔሽୀ௧ିଵ
௧ି଼  the standard deviation of x over the prior eight quarters. Standard errors are computed across weekly coefficient estimates, following Fama and MacBeth (1973). The resulting t-

statistics are shown in parentheses. The notations ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. All returns are shown as percentages. The last row provides the average adjusted R2 

from the weekly regressions. 

SURPRISE1 SURPRISE2 SUE1 SUE2 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Intercept -0.122*** -0.144*** -0.131*** -0.068 -0.171* -0.102 0.280** 0.212* 0.235* 0.482*** 0.396*** 0.454*** 
(-4.94) (-6.00) (-5.31) (-0.73) (-1.86) (-1.12) (2.18) (1.72) (1.85) (4.10) (3.40) (3.88) 

SKEW -0.378*** -0.077 -1.637*** -0.465** -1.293*** -0.376 -1.273*** -0.664*** 
(-8.07) (-1.31) (-12.15) (-2.55) (-5.65) (-1.45) (-8.92) (-3.04) 

Decile (O/S) -0.008*** -0.004*** -0.022*** -0.006* -0.018*** -0.007** -0.007* 0.001 
(-11.42) (-3.82) (-8.19) (-1.75) (-5.23) (-2.00) (-1.70) (0.19) 

Decile(O/S) × SKEW -0.060*** -0.232*** -0.168*** -0.113*** 
(-4.88) (-5.91) (-3.49) (-3.14) 

AMIHUD -2.091*** -2.120*** -2.046*** -8.468*** -8.740*** -8.357*** -0.865** -1.125*** -0.717** -2.127*** -2.533*** -2.050*** 
(-14.50) (-13.99) (-14.24) (-17.15) (-16.75) (-16.96) (-2.45) (-3.09) (-1.96) (-7.02) (-7.94) (-6.51) 

BM 0.050*** 0.042*** 0.045*** -0.208*** -0.234*** -0.225*** -0.170** -0.194*** -0.185* -0.713*** -0.728*** -0.724*** 
(5.28) (4.22) (4.66) (-8.59) (-9.23) (-9.04) (-2.42) (-2.64) (-2.58) (-16.84) (-16.64) (-16.73) 

Ln(SIZE) 0.016*** 0.021*** 0.019*** 0.101*** 0.116*** 0.107*** -0.002 0.010 0.006 0.090*** 0.097*** 0.092*** 
(7.75) (9.88) (8.89) (11.14) (12.08) (11.34) (-0.23) (1.04) (0.60) (6.93) (6.95) (6.61) 

RETw-1 0.002*** 0.002*** 0.002*** 0.012*** 0.012*** 0.012*** 0.010*** 0.010*** 0.010*** 0.012*** 0.012*** 0.012*** 
(8.72) (8.94) (9.08) (13.29) (13.74) (13.72) (7.87) (8.19) (8.06) (11.78) (11.93) (11.91) 

MOMENT 0.001*** 0.001*** 0.001*** 0.004*** 0.004*** 0.004*** 0.011*** 0.011*** 0.011*** 0.011*** 0.011*** 0.011*** 
(5.60) (6.43) (6.00) (9.77) (10.34) (10.00) (15.78) (15.91) (15.72) (19.32) (19.27) (19.22) 

HVOL -0.002 0.006 0.013 -0.156*** -0.137*** -0.112** -0.291*** -0.279*** -0.240*** -0.775*** -0.775*** -0.756*** 
(-0.11) (0.44) (0.97) (-3.55) (-3.14) (-2.59) (-3.26) (-3.12) (-2.75) (-13.45) (-13.81) (-13.43) 

Adj-R2(%) 4.138 3.957 4.526   4.706 4.553 4.895   6.244 5.959 6.596   7.373 7.345 7.639 
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Fig. 1. Time points in the model 
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Fig. 2. Trading structure at the initial time point 

The tree diagram represents the probabilistic structure of trading at the initial time point. The first two nodes reflect nature’s draw for volatility 

and directional information events. Subsequent nodes reflect trader selection probabilities. The variable α is the fraction of the universe of traders 

who are informed, and 1 െ α are uninformed; δ is the fraction of the universe of informed traders who have the volatility information, and 1 െ δ 

are informed of directional information; ߞ௩ is the fraction of the volatility informed who choose to trade calls, and 1 െ  ௗௌߟ ;௩ choose to trade putsߞ

is the fraction of the directional informed who choose to trade in the stock market, ߟௗ choose to trade calls, and 1 െ ௗௌߟ െ  ௗ choose to tradeߟ

puts; ݍଵ,	ݍଶ,	ݍଷ,	ݍସ,	ݍହ,	and	ݍ are the factions of the uninformed to buy or sell the stock, calls, or puts. The probabilities of trades are the same at 

each uninformed node A, B, C, and D. 
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Fig. 3. Persistence of O/S-return relation by SKEW tercile. 

This figure shows for each SKEW tercile S1 to S3, the four-factor alphas of the O/S long-short strategies over a twelve week period after 

portfolio formation. SKEW is the difference between the implied volatilities of an OTM put and an ATM call. O/S equals the ratio of options 

volume to stock volume. Portfolios are formed based on an independent sort by the three SKEW and ten O/S groups, as in Panel B of Table 1. 

Stocks in S1 have the lowest SKEW, while stocks in S3 have the highest SKEW. Stocks in V1 have the lowest O/S, while stocks in V10 have the 

highest O/S. The O/S long-short strategy involves buying the lowest O/S decile (V1) and selling the highest O/S decile (V10). The top graph 

shows weekly alphas, along with the 95% confidence interval. The bottom graph shows cumulative alphas. Alphas are shown as percentages. 



   

 
 

57 

 

 

 

Fig. 4. Persistence of ∆O/S-return relation by SKEW tercile. 

This figure presents for each SKEW tercile S1 to S3, the four-factor alphas of the ∆O/S long-short strategies over a twelve week period after 

portfolio formation. SKEW is the difference between the implied volatilities of an OTM put and an ATM call. O/S is the ratio of options volume 

to stock volume and ∆O/S equals the deviation of O/S from its historical average over the previous six months. Portfolios are formed based on an 

independent sort by the three SKEW and ten ∆O/S groups. Stocks in S1 have the lowest SKEW, while stocks in S3 have the highest SKEW. 

Stocks in V1 have the lowest ∆O/S, while stocks in V10 have the highest ∆O/S. The ∆O/S long-short strategy involves buying the lowest ∆O/S 

decile (V1) and selling the highest ∆O/S decile (V10). The top graph shows weekly alphas, along with the 95% confidence interval. The bottom 

graph shows cumulative alphas. Alphas are shown as percentages. 


